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Abstract. In solving many practical mathematical programming applications, it is preferable 

to formulate numerous quantifiably good alternatives that provide very different perspectives 

to the problem. This is because decision-making typically involves complex problems that 

are riddled with incompatible and inconsistent performance objectives and possess competing 

design requirements which are very difficult – if not impossible – to quantify and capture at 

the time that the supporting decision models are constructed. There are invariably unmodelled 

design issues, not apparent at the time of model construction, which can greatly impact the 

acceptability of the model’s solutions. Consequently, it is preferable to generate several 

alternatives that provide multiple, disparate perspectives to the problem. These alternatives 

should possess near-optimal objective measures with respect to all known modelled objective(s), 

but be fundamentally different from each other in terms of the system structures characterized 

by their decision variables. This solution approach is referred to as modelling-to-generate-

alternatives (MGA). This study demonstrates how the biologically-inspired, Firefly algorithm 

can be used to efficiently create multiple solution alternatives that both satisfy required system 

performance criteria and yet are maximally different in their decision spaces. 
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Introduction 

Typical “real world” decision-making applications involve complex problems that 

possess requirements which are very difficult to incorporate into supporting decision 

models and tend to be riddled with competing performance objectives. While 

mathematically optimal solutions can provide the best solutions to the modelled 
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problems, they are generally not the best answers to the underlying real problems 

as there are invariably unquantified issues and unmodelled objectives not apparent 

at the time of model construction. Consequently, it is preferable to generate a 

number of different alternatives that provide multiple, disparate perspectives to the 

particular problem (Yeomans & Gunalay 2011). Preferably these alternatives 

should all possess good (i.e. near-optimal) objective measures with respect to the 

modelled objective(s), but be as fundamentally different as possible from each 

other in terms of the system structures characterized by their decision variables. In 

response to this option creation requirement, several approaches collectively referred 

to as modelling-to-generate-alternatives (MGA) have been developed (Loughlin 

et al. 2001). The primary motivation behind MGA is to produce a manageably 

small set of alternatives that are good with respect to modelled objectives yet as 

different as possible from each other in the decision space. In so doing, the resulting 

alternative solution set is likely to provide truly different choices that all perform 

somewhat similarly with respect to the modelled objectives, yet very differently 

with respect to the unmodelled issues. 

In this paper, it is shown how to efficiently generate a set of maximally different 

solution alternatives by implementing a modified version of the Firefly Algorithm 

(FA) of Yang (2010). For optimization purposes, Yang (2010) has demonstrated 

that FA is more computationally efficient than such commonly-used metaheuristics as 

genetic algorithms, simulated annealing, and enhanced particle swarm optimization. 

Hence, this new innovative MGA approach using FA is a very computationally 

efficient procedure. This study illustrates the efficacy of the MGA capabilities of 

this new FA approach procedure in constructing multiple, good-but-very-different 

solution alternatives to a constrained optimization test problem. 

 

Firefly algorithm for function optimization 

While this section provides a brief synopsis of the steps involved in the FA process, 

more specific details can be found in Yang (2010). The FA is a biologically-inspired 

metaheuristic that employs the following three idealized rules: (i) All fireflies are 

unisex so that one firefly will be attracted to other fireflies irrespective of their 

sex; (ii) Attractiveness between fireflies is proportional to their brightness, implying 

that for any two flashing fireflies, the less bright one will move towards the 

brighter one. Attractiveness and brightness both decrease as the distance between 

fireflies increases. If there is no brighter firefly within its visible vicinity, then a 

particular firefly will move randomly; and (iii) The brightness of a firefly is 

determined by the landscape of the objective function. Namely, for a maximization 

problem, the brightness can simply be proportional to the value of the objective 

function. Based upon these three rules, the basic steps of the FA are summarized 

within the pseudo-code of Figure 1. 
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Objective Function f(X), X = (x1, x2,…xd) 

Generate the initial population of n fireflies, Xi, i = 1, 

2,…,n 

Light intensity Ii at Xi is determined by f(Xi) 

Define the light absorption coefficient γ 

while (t < MaxGeneration) 

 for i = 1: n , all n fireflies 

  for j = 1: n ,all n fireflies (inner loop) 

   if (Ii < Ij), Move firefly i towards j; end if 

   Vary attractiveness with distance r via e
- γr

   

  end for j 

 end for i 

 Rank the fireflies and find the current global 

best solution g
*
   

end while 

Postprocess the results 

 

Fig. 1. Pseudo Code of the Firefly Algorithm 

 

In the FA, there are two important issues to resolve: the variation of light intensity 

and the formulation of attractiveness. For simplicity, it can always be assumed that 

the attractiveness of a firefly is determined by its brightness which in turn is associated 

with the encoded objective function. In the simplest case, the brightness of a firefly 

at a particular location X would be its calculated objective value F(X). However, 

the attractiveness, , between fireflies is relative and will vary with the distance rij 

between firefly i and firefly j. In addition, light intensity decreases with the distance 

from its source, and light is also absorbed in the media, so the attractiveness 

should be allowed to vary with the degree of absorption. Consequently, the overall 

attractiveness of a firefly can be defined as  = 0 exp(-r2
), where 0 is the 

attractiveness at distance r = 0 and  is the fixed light absorption coefficient for a 

specific medium. If the distance rij between any two fireflies i and j located at Xi 

and Xj, respectively, is calculated using the Euclidean norm, then the movement of 

a firefly i that is attracted to another more attractive (i.e. brighter) firefly j is 

determined by Xi = Xi + 0 exp(-rij)
2
)(Xi – Xj) + i . 

In this expression of movement, the second term is due to the relative attraction 

and the third term is a randomization component. Yang (2010) indicates that  is a 

randomization parameter normally selected within the range [0,1] and i is a vector 

of random numbers drawn from either a Gaussian or uniform (generally [-0.5,0.5]) 

distribution. It should be pointed out that this expression is a random walk biased 

toward brighter fireflies and if 0 = 0, it becomes a simple random walk. The parameter 

 characterizes the variation of the attractiveness and its value determines the 

speed of the algorithm’s convergence. For most applications,  is typically set between 

0.1 to 10 (Yang 2010). In any given optimization problem, for a very large number 

of fireflies n >> k where k is the number of local optima, the initial locations of the 
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n fireflies should be distributed relatively uniformly throughout the entire search 

space. As the FA proceeds, the fireflies would converge into all of these local optima 

(including the global ones). By comparing the best solutions among all these optima, 

the global optima can easily be determined. Yang (2010) demonstrates that the FA 

will approach the global optima when n    and the number of iterations t, is set 

so that t >>1. In reality, the FA has been found to converge extremely quickly. 

Two important limiting or asymptotic cases occur when   0 and when   

 . For   0, the attractiveness is constant  = 0, which is equivalent to having 

a light intensity that does not decrease. Thus, a firefly would be visible anywhere 

within the solution domain. Hence, a single (usually global) optima can easily be 

reached. If the inner loop for j in Figure 1 is removed and Xj is replaced by the 

current global best g*, then this implies that the FA becomes a special case of the 

accelerated particle swarm optimization (PSO) algorithm. Subsequently, the com-

putational efficiency of this special case of the FA is equivalent to that of enhanced 

PSO. Conversely, when    , the attractiveness is essentially zero in the sightline 

of other fireflies. This is equivalent to the case where the fireflies randomly roam 

throughout a very thick foggy region. No other fireflies are visible and each firefly 

roams in a completely random fashion. This case corresponds to a completely random 

search method. As the FA operates between these two extremes, it is possible to 

adjust the parameters  and   so that the FA can outperform both the random 

search and the enhanced PSO algorithms. Furthermore, the FA can find both the 

global optima as well as the local optima concurrently which holds huge computational 

and efficiency advantages for MGA purposes (Yeomans and Gunalay 2011). Another 

additional advantage of the FA for MGA implementation is that different fireflies 

essentially work independently of each other and FA are thus better than genetic 

algorithms and PSO for MGA because the fireflies can aggregate more closely 

around each local optimum. 

 

Modelling to generate alternatives with the firefly algorithm 

In most “real world” decision problems, there are numerous system objectives and 

requirements that are never made explicitly apparent or included at the decision 

formulation stage. Furthermore, it may never be possible to explicitly express all 

of the subjective considerations because there are frequently numerous incompatible, 

competing, adversarial stakeholder groups. Therefore most subjective aspects remain 

unquantified and unmodelled in the construction of any corresponding decision 

models. This is a common occurrence in situations where the final decisions are 

constructed based not only upon clearly stated and modelled objectives, but also 

upon fundamentally subjective, political and socio-economic goals and stakeholder 

preferences (Yeomans and Gunalay 2011). When unmodelled objectives and 

unquantified issues exist, different approaches are required in order to not only 

search the decision space for the noninferior set of solutions, but also to explore 

the decision space for inferior alternative solutions to the modelled problem.  
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In order to properly motivate an MGA search procedure, it is necessary to provide a 

more formal definition of the goals of the MGA process (Loughlin et al. 2001; 

Yeomans and Gunalay 2011).  Suppose the optimal solution to an original mathematical 

model is X* with objective value Z* = F(X*).  The following model can then be 

solved to generate an alternative solution that is maximally different from X*: 

 

Max   = i
| Xi - Xi* | 

Subject to: 

X   D 

| F(X) - Z* |   T 

 

where   is a difference function and T is a target specified in relation to the original 

optimal function value Z*.  T is a user-supplied value that represents how much of 

the inferior region is to be explored for alternative solutions. The FA-based MGA 

procedure is designed to generate a small number of good but maximally different 

alternatives by adjusting the value of T and using the FA to solve the corresponding, 

new maximal difference problem instance. In this approach, subpopulations within 

the algorithm’s overall population are established as the Fireflies collectively 

evolve toward different local optima in the solution space. Each desired solution 

alternative undergoes the common search procedure of the FA. The survival of 

solutions depends upon how well the solutions perform with respect to the modelled 

objective(s) and by how far away they are from all of the other previously generated 

alternatives in the decision space.  

Computational testing of the firefly algorithm used for MGA 

The application of the MGA procedure will be illustrated using a spring design 

problem taken from Cagnina et al. (2008). The design of a tension and compression 

spring has frequently been employed as a benchmark problem for constrained 

engineering optimization problems (Cagnina et al. 2008). The problem involves 

three design variables: (i) 1x , the wire diameter, (ii) 2x , the coil diameter, and 

(iii) 3x , the length of the coil. The aim is to essentially minimize the weight subject 

to constraints on deflection, stress, surge frequency and geometry. The mathematical 

formulation for this test problem can be summarized as: 

 

Min F(X) =  32
2
1 2 xxx   

Subject to: 

g1(X) = 1 – 
4
1

3
3
2

71785x

xx
   0 
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g2(X) = 
 4

12
3
1

21
2
2

12566

4

xxx

xxx




 + 

2
15108

1

x
 – 1   0 

g3(X) = 1 – 

3
2
2

145.140

xx

x
   0 

g4(X) = 
5.1

21 xx 
 – 1   0 

0.05   1x    2.0 

0.25   2x    1.3 

2.0   3x    15.0 

 

For the design parameters employed in this specific problem formulation, 

Cagnina et al. (2008) provide a best solution of F(X*) = 0.0127 with X* = 

(0.051690, 0.356750, 11.287126). However, as outlined earlier, planners generally 

prefer to be able to select from a set of “near-optimal” alternatives that significantly 

differ from each other in terms of the system structures characterized by their 

decision variables.  In order to create this set of alternative planning options, extra 

target constraints that varied the value of T were placed into this original formulation 

in order to force the generation of solutions that were maximally different from 

the initial optimal solution. The MGA difference model described in the previous 

section was used to produce the optimal solution and the 10 maximally different 

solutions shown in Table 1. 

As described earlier, many problems are typically riddled with incongruent 

performance requirements that contain significant stochastic uncertainty that are 

also very difficult to quantify. Consequently, it is preferable to create several 

quantifiably good alternatives that concurrently provide very different perspectives 

to the potentially unmodelled performance design issues during the policy formulation 

stage. The unique performance features captured within these dissimilar alternatives 

can result in very different system performance with respect to the unmodelled issues, 

thereby incorporating the unmodelled issues into the actual solution process. This 

example has demonstrated how an MGA modelling perspective can be used to 

generate multiple, good policy alternatives via the computationally efficiently FA 

that satisfy required system performance criteria according to prespecified bounds 

and yet remain as maximally different from each other as possible in the decision 

space. In addition to its alternative generating capabilities, the MGA procedure 

has simultaneously performed exceedingly well with respect to its role in function 

optimization. It should be explicitly noted that the cost of the overall best solution 

produced by the MGA procedure is indistinguishable from the one determined in the 

much more straightforward function optimization approach of Cagnina et al. (2008).  
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Table 1. Objective Values and Solutions for the 11 Maximally Different Alternatives. 

Increment 1% Increment Between Alternatives 2.5% Increment Between Alternatives 

 F(X) 
1x  2x  3x  F(X)

 1x  2x  3x  

Optimal 0.0127 0.05 0.3174 14.0324 0.0127 0.05 0.3174 14.0322 

Alternative 1 0.0128 0.05 0.3164 14.1754 0.0128 0.05 0.3165 14.1598 

Alternative 2 0.0128 0.0514 0.3472 12.0089 0.0131 0.05 0.3129 14.777 

Alternative 3 0.0129 0.0529 0.3862 9.9684 0.0132 0.05 0.3167 14.6402 

Alternative 4 0.013 0.0521 0.3656 11.0667 0.0140 0.0557 0.4307 9.5783 

Alternative 5 0.0131 0.0527 0.3766 10.5179 0.0143 0.0542 0.4014 11.6481 

Alternative 6 0.0134 0.05 0.3157 14.978 0.0146 0.0546 0.4247 10.7556 

Alternative 7 0.0135 0.0524 0.3597 11.6966 0.0149 0.0562 0.438 11.1197 

Alternative 8 0.0137 0.052 0.3629 12.1615 0.0152 0.0605 0.4836 8.9963 

Alternative 9 0.0138 0.0523 0.348 13.3247 0.0156 0.0574 0.3841 14.5182 

Alternative 10 0.0140 0.0535 0.3857 14.162 0.0159 0.0553 0.4072 15.0000 

Conclusions 

In this paper, a procedure was presented that demonstrated how the computationally 

efficient FA could be used to generate multiple, maximally different, near-best 

alternatives. In this MGA capacity, the FA produces numerous solutions possessing 

the requisite problem characteristics, with each generated alternative providing a 

very different perspective.  Since FA techniques can be adapted to solve a wide 

variety of problem types, the practicality of this MGA approach can clearly be 

extended into numerous disparate planning applications. These extensions will be 

studied in future research.  
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