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Abstract. In solving many “real world” decision-making applications, it is generally preferable 
to formulate several quantifiably good alternatives that provide numerous, distinct approaches to 
the problem. This is because policy formulation typically involves complex problems that 
are riddled with incongruent performance objectives and possess incompatible design requirements 
that can be very difficult – if not impossible – to incorporate at the time supporting decision 
models are constructed. By generating a set of maximally different solutions, it is believed that 

some of the dissimilar alternatives will provide unique perspectives that serve to satisfy the 
unmodelled characteristics. This maximally different solution creation approach is referred to as 
modelling-to-generate-alternatives (MGA). This paper provides a stochastic biologically-
inspired metaheuristic simulation-optimization MGA method that can efficiently create multiple 
solution alternatives to problems containing significant stochastic uncertainties that satisfy 
required system performance criteria and yet are maximally different in their decision spaces. 
The efficacy of this stochastic MGA approach is demonstrated on a municipal solid waste 
case study. It is shown that this new computationally efficient algorithmic approach can 

simultaneously produce the desired number of maximally different solution alternatives in a 
single computational run of the procedure. 
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Introduction 

“Real world” decision-making typically involves multifaceted stochastic problems that 

possess design components which are very difficult to incorporate into corresponding 

mathematical programming models and tend to be riddled with unquantifiable design 
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specifications (Janssen et al. 2010; Mowrer 2000; van Delden et al. 2012; Walker 

et al. 2003). While mathematically optimal solutions provide the best solutions to 

these modelled problems, they are generally not the best answers to the fundamental 

“real” problems as there are invariably unmodelled objectives and unquantified issues 

not apparent during model construction (Loughlin et al. 2001; van Delden et al. 

2012). Hence, it is generally considered desirable to generate a number of very 

dissimilar alternatives that supply completely distinct perspectives to the formulated 

problem (Loughlin et al. 2001; van Delden et al. 2012; Yeomans & Gunalay 
2011). These alternatives should possess near-optimal objective measures with respect 

to all known modelled objective(s), but be maximally different from each other in 

terms of their decision variable structures (Mowrer 2000; Walker et al. 2003). 

Several approaches referred to as modelling-to-generate-alternatives (MGA) have 

been developed in response to this multi-solution creation requirement (Imanirad 

et al. 2012; Yeomans & Gunalay 2011). 

In this paper, it is shown how to efficiently construct a set of maximally different 

solution alternatives by implementing a modified version of the computationally 

efficient Firefly Algorithm (FA) of Yang (2010) in conjunction with a new stochastic 

MGA approach that employs simulation-optimization (SO) (Yeomans & Gunalay 

2011). The MGA procedure provided in this study extends the earlier approach of 

Imanirad et al. (2012) by employing a novel FA-driven SO approach to concurrently 
generate all of the desired number of solutions in a one-pass algorithm. Hence, this 

stochastic FA procedure is very computationally efficient from an MGA perspective. 

The procedure is demonstrated on a municipal solid waste (MSW) facilities expansion 

case study taken from Yeomans (2012). 

Firefly algorithm for function optimization 

While this section briefly outlines the FA procedure, more detailed specifications 

can be located in Yang (2010) and Imanirad et al. (2012). The FA is a biologically-

inspired, population-based metaheuristic with each firefly in the population representing 

a potential solution to the problem. An FA procedure employs three idealized 

rules: (i) All fireflies within a population are unisex, so that one firefly will be attracted 
to other fireflies irrespective of their sex; (ii) Attractiveness between fireflies is 

proportional to their brightness, implying that for any two flashing fireflies, the 

less bright one will move towards the brighter one; and (iii) The brightness of a 

firefly is determined by the value of its objective function. For a maximization 

problem, the brightness can simply be considered proportional to the value of the 

objective function. Yang (2010) demonstrates that the FA approaches the global 

optima whenever the number of fireflies n    and the number of iterations t, is 

set so that t >>1. In reality, the FA has been shown to converge extremely quickly 

into both local and global optima (Imanirad et al. 2012; Yang 2010). The basic 

operational steps of the FA are summarized in Figure 1 (Yang 2010). 
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Objective Function F(X), X = (x1, x2,… xd) 

Generate the initial population of n fireflies, Xi, i = 1, 2,…, n 

Light intensity Ii at Xi is determined by F(Xi) 

Define the light absorption coefficient γ 

while (t < MaxGeneration) 

 for i = 1: n , all n fireflies 

  for j = 1: n ,all n fireflies (inner loop) 
   if (Ii < Ij), Move firefly i towards j; end if 

   Vary attractiveness with distance r via e- γr   

  end for j 

 end for i 

 Rank the fireflies and find the current global best solution G*   

end while 
Postprocess the results 

 

Fig. 1. Pseudo Code of the Firefly Algorithm 

Modelling to generate alternatives with the firefly algorithm 

Notwithstanding other fundamental limitations, most mathematical programming 

techniques have focused almost exclusively upon producing optimal solutions to 

single-objective problem formulations or generating non inferior solutions to multi-

objective problem instances. While such algorithms may determine optimal solutions 

to the derived complex mathematical models, whether their results actually establish 

“best” to the underlying real problems is certainly questionable (van Delden et al. 2012; 

Walker et al. 2001). In most “real world” decision problems, there are numerous 
system objectives and requirements that are never explicitly apparent or included 

at the decision formulation stage (van Delden et al. 2012; Walker et al. 2001). 

Furthermore, it may never be possible to explicitly express all of the subjective 

considerations because there are frequently numerous incompatible, competing, 

design requirements and, perhaps, adversarial stakeholder groups (van Delden et 

al. 2012). Therefore most subjective aspects of a problem remain unquantified and 

unmodelled in the construction of the resultant decision models. This is a common 

occurrence in situations where the final decisions must be constructed based not 

only upon clearly stated and modelled objectives, but also upon fundamentally 

subjective, political and socio-economic goals and stakeholder preferences (van 

Delden et al. 2012; Yeomans and Gunalay 2011). Numerous “real world” examples of 
this type of incongruent modelling duality are described in Loughlin et al. (2001) 

and Yeomans (2012).  

When unmodelled objectives and unquantified issues exist, different approaches 

are required in order to not only search the decision space for the noninferior set of 

solutions, but also to explore the decision space for inferior alternative solutions to the 

modelled problem. In particular, any search for good alternatives to problems 
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known (or suspected) to contain unmodelled objectives must focus not only on the 

non-inferior solution set, but also necessarily on an exploration of the problem’s 

inferior region. To illustrate the implications of an unmodelled objective on a decision 

search, assume that the optimal solution for a quantified, single-objective, maximization 

decision problem is X* with corresponding objective value Z1*. Now suppose that 

there exists a second, unmodelled, maximization objective Z2 that subjectively reflects 

environmental/political acceptability. Let the solution Xa, belonging to the noninferior, 

2-objective set, represent a potential best compromise solution if both objectives 
could somehow have been simultaneously evaluated by the decision-maker. While 

X
a might be viewed as the best compromise solution to the real problem, it would 

clearly appear inferior to the solution X* in the quantified model, since it must be 

the case that Z1a ≤ Z1*. Consequently, when unmodelled objectives are factored 

into the decision making process, mathematically inferior solutions for the modelled 

problem can be optimal for the real problem. Therefore, when unmodelled objectives 

and unquantified issues might exist, different approaches are required in order to 

not only search the decision space for the noninferior set of solutions, but also to 

simultaneously explore the decision space for inferior alternative solutions to the 

modelled problem. Population-based procedures such as the FA permit concurrent 

searches throughout a feasible region and thus prove to be particularly adept 

methods for searching through a problem’s decision space.  
The primary motivation behind MGA is to produce a manageably small set of 

maximally different alternatives that are quantifiably good with respect to modelled 

objectives yet are as different as possible from each other in the decision space. In 

doing this, the resulting alternative solution set is likely to provide truly different 

choices that all perform somewhat similarly with respect to the known modelled 

objective(s) yet very differently with respect to any unmodelled issues. By generating 

these maximally different solutions, the decision-makers can explore alternatives 

that may satisfy the unmodelled objectives to varying degrees of stakeholder 

acceptability. Obviously solution-setters must conduct a subsequent comprehensive 

comparison of the alternatives to determine which options would most closely satisfy 

their very specific circumstances. Thus, an MGA approach should be viewed as 
decision support rather than explicit solution determination. 

In order to properly motivate an MGA search procedure, it is necessary to provide a 

more formal definition of the maximal difference goals of MGA (Loughlin et al. 

2001; Yeomans 2012).  Suppose the optimal solution to an original mathematical 

model is X* with objective value Z* = F(X*). The following model can then be 

solved to generate an alternative solution that is maximally different from X*: 

max   = i
| Xi - Xi* | 

 Subject to: 

X   D 

| F(X) - Z* |   T 

where   represents some difference function (shown as absolute in this instance) 

and T is a tolerance target specified in relation to the original optimal function 

value Z*. T is a user-supplied value that determines how much of the inferior region 
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is to be explored for alternative solutions. The FA-based MGA procedure is designed 

to generate a small number of good but maximally different alternatives by adjusting 

the value of T and using the FA to solve the corresponding, new maximal difference 

problem instance. In this approach, subpopulations within the algorithm’s overall 

population are established as the Fireflies collectively evolve toward different local 

optima within the solution space. Each desired solution alternative undergoes the 

common search procedure of the FA. The survival of solutions depends upon how 

well the solutions perform with respect to the modelled objective(s) and by how 
far away they are from all of the other previously generated alternatives in the 

decision space. 

FA-driven simulation-optimization approach for stochastic MGA 

The stochastic FA-directed simulation-optimization (SO) approach for efficiently 

generating sets of maximally different solution alternatives consists of two alternating 

computational phases; (i) an “evolutionary phase” directed by the FA module and 

(ii) a simulation module. As mentioned earlier, an FA maintains a population of 

candidate solutions throughout its execution. The evolutionary phase considers the 

entire population of solutions during each generation of the search and evolves 

from a current population to a subsequent one. The quality of each solution in the 

population is found by having its performance criterion, F, evaluated by simulation. 

Because of the system’s stochastic components, all performance measures are statistics 

calculated from the responses generated in the simulation module. After simulating 

each candidate solution, the respective fitness values are returned to the FA module 
to be utilized in the creation of the next generation of candidate solutions. One 

primary principle of an FA is that fitter solutions in the current population possess 

a greater likelihood for survival and progression into the subsequent generation. 

The FA module evolves the system toward improved solutions in subsequent pop-

ulations and ensures that the solution search does not become fixated at some local 

optima. After generating a new candidate solution set in the FA module, the new 

population is returned to the simulation module for comparative evaluation. This 

alternating, two-phase search process terminates when an appropriately stable system 

state has been attained. 

An obvious approach to generate alternatives would be to iteratively solve the 

maximum difference model by incrementally updating the target T whenever a 

new alternative needs to be produced. Such an approach would need to run n times 
in order to produce n alternatives. The new stochastic MGA procedure is designed 

to concurrently generate its maximally different alternatives in a single pass of the 

FA procedure (i.e. the same number of runs as if FA were used solely for function 

optimization purposes) and its efficiency is based upon the concept of co-evolution 

(Imanirad et al. 2012). Pre-specified stratified subpopulation ranges within the 

FA’s overall population are established that collectively evolve the search toward 

the formation of the stipulated number of solution alternatives. Each desired solution 

alternative is represented by each respective subpopulation and each subpopulation 
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undergoes the common operations of the FA. The survival of solutions in each 

subpopulation depends upon how well the solutions perform with respect to both 

the modelled objective(s) and by how far away they are from all of the other solutions 

in the decision space. This forces each subpopulation to co-evolve toward good 

but maximally distant regions of the decision space (Imanirad et al. 2012; Yeomans 

& Gunalay 2011). By employing the co-evolutionary concept, it becomes possible 

to implement an FA-directed stochastic MGA procedure that concurrently produces 

alternatives which possess objective function bounds. Namely, the algorithm need 
be run only a single time to produce its entire set of alternatives irrespective of the 

value of n. Hence, it is a very computationally efficient process. The steps in the 

FA-driven stochastic algorithm are as follows: 

1. Create an initial population stratified into P equally-sized subpopulations. The 

value for P must be established a priori by the decision-maker. P represents 

the desired number of maximally different alternative solutions within a pre-

scribed target deviation from the optimal to be generated. Sp represents the pth 

subpopulation set of solutions, p = 1,…,P and there are K solutions contained 

within each Sp. 

2. Evaluate all solutions in Sp, p = 1,…,P, with respect to the modelled objective 

using the simulation module. Solutions meeting the target constraint and all 

other problem constraints are designated as feasible, while all other solutions 
are designated as infeasible. 

3. Apply an appropriate elitism operator to each Sp to preserve the best individual 

in each subpopulation. In Sp, p = 1,…,P, the best solution is the feasible solution 

most distant in decision space from all of the other subpopulations (the distance 

measure is defined in Step 6). Note: Because the best solution to date is always 

placed into each subpopulation, at least one solution in Sp will always be feasible. 

4. Stop the algorithm if the termination criteria (such as maximum number of 

iterations or some measure of solution convergence) are met. Otherwise, 

proceed to Step 5. 

5. Identify the decision space centroid, Cip, for each of the K’  K feasible solutions 

within k = 1,…,K of Sp, for each of the N decision variables Xikp, i = 1,…, N. 

Each centroid represents the N-dimensional centre of mass for the solutions in 

each of the respective subpopulations, p. As an illustrative example for 

determining a centroid, calculate Cip = (1/K’)
k Xikp. In this calculation, 

each dimension of each centroid is computed as the straightforward average 

value of that decision variable over all of the values for that variable within 

the feasible solutions of the respective subpopulation. Alternatively, a centroid 

could be calculated as some fitness-weighted average or by some other 

appropriately defined measure. 

6. For each solution k = 1,…, K, in each Sq, calculate Dkq, a distance measure 

between that solution and all other subpopulations. As an illustrative example 

for determining a distance measure, calculate Dkq = Min {
i | Xikp - Cip | ; p 

= 1,…,P, p  q}. This distance represents the minimum distance between 

solution k in subpopulation q and the centroids of all other subpopulations. 
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Alternatively, the distance measure could be calculated by some other appro-

priately defined measure.  
7. Rank the solutions within each Sp according to the distance measure Dkq 

objective – appropriately adjusted to incorporate any constraint violation 

penalties. The goal of maximal difference is to force solutions from one sub-

population to be as far apart as possible in the decision space from the solutions 

of each of the other subpopulations. This step orders the specific solutions in 

each subpopulation by those solutions which are most distant from the solutions 

in all of the other subpopulations. 

8. In each Sp, apply FA “change operations” to the solutions and return to Step 2. 

Case study of stochastic MGA  

The ability of the stochastic FA-directed MGA procedure to concurrently produce 

maximally different alternatives will be illustrated using the MSW facilities expansion 
case study taken from Yeomans (2012). The region in the facility expansion planning 

problem consists of three separate municipalities whose MSW disposal needs are 

collectively met by a landfill and two waste-to-energy (WTE) incinerators. The 

planning horizon consists of three separate time periods with each of the periods 

covering an interval of five years. The landfill capacity can be expanded only once 

over the entire 15 year planning horizon. Each of the WTE facilities can be expanded 

by any one of four possible options in each of the three time periods. The expansion 

costs escalate over time to reflect anticipated future conditions and are discounted to 

present value cost terms for use in the objective function. The MSW waste generation 

rates and the costs for waste transportation and treatment vary both temporally and 

spatially. The case requires the determination of the preferred facility expansion 
alternatives during the different time periods and the effective allocation of the 

relevant waste flows in order to minimize the total system costs over the planning 

horizon. Yeomans (2012) produced a single best solution to the expansion problem 

costing $600.2 million. In order to create three maximally different planning alternatives, 

(for example, the optimal solution and three alternatives generated by target values 

of, 2%, 5%, and 8%, respectively), the stochastic FA-directed MGA procedure 

described in the previous section was run once to produce the objectives for the 4 

alternatives shown in Table 1.   
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Table 1. System Expansion Costs ($ Millions) for the 4 Alternatives 

 Overall “Optimal” 

Solution 

Best 2% 

Solution 

Best 5% 

Solution 

Best 8% 

Solution 

System 

Expansion Costs 
600.19 602.57 611.96 616.44 

Conclusions 

In this paper, a stochastic FA-directed MGA algorithm was introduced that 

demonstrated how the computationally efficient, population-based FA could be 

exploited to concurrently generate multiple, maximally different, near-best alternatives 

via its co-evolutionary solution process. In this MGA capacity, the FA-directed 

approach produces numerous solutions possessing the requisite problem characteristics, 

with each generated alternative guaranteeing a very different perspective. The 

computational example underscored several important findings with respect to the 

stochastic FA-based MGA method: (i) The FA can be employed as the underlying 

optimization search routine for SO purposes; (ii) The co-evolutionary capabilities 

within the FA can be exploited to concurrently generate more good alternatives 
than planners would be able to create using other MGA approaches because of the 

evolving nature of its population-based solution searches; (iii) By the design of the 

MGA algorithm, the alternatives generated are good for planning purposes since 

all of their structures will be as mutually and maximally different from each other 

as possible; (iv) The approach is very computationally efficient since it need only 

be run once to generate its entire set of multiple, maximally different, good solution 

alternatives (i.e. to generate n solution alternatives, the MGA algorithm needs to 

run exactly the same number of times that the FA would need to be run for function 

optimization purposes alone – namely once – irrespective of the value of n); and, 

(v) The best overall solutions produced by the stochastic MGA procedure will be 

very similar, if not identical, to the best overall solutions that would be produced 

by the FA for function optimization alone. Since FA-directed techniques can be 
adapted to solve a wide variety of problem types, the practicality of the stochastic 

FA-directed SO MGA approach can clearly be extended into numerous “real 

world” applications. These extensions will become the focus of future research. 
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