

Lecture Notes in Management Science (2013) Vol. 5: 143–152
5th International Conference on Applied Operational Research, Proceedings
© Tadbir Operational Research Group Ltd. All rights reserved. www.tadbir.ca

ISSN 2008-0050 (Print), ISSN 1927-0097 (Online)

A sampling-based approximation

of the objective function of the

orienteering problem with stochastic

travel and service times

V. Papapanagiotou, D. Weyland, R. Montemanni and L.M. Gambardella

IDSIA – USI/SUPSI, Galleria 2, Manno, Switzerland
roberto@idsia.ch

Abstract. In this paper, a variant of the orienteering problem in which the travel and service
times are stochastic, is examined. Given a set of potential customers, a subset of them has to be
selected to be serviced by the end of the day. Every time a delivery to a selected customer is
fulfilled before the end of the day, a reward is received, otherwise, if the delivery is not completed,

a penalty is incurred. The target is to maximise the expected income (rewards-penalties) of the
company. The focus of this paper is to evaluate a sampling based way to approximate the
objective function which is designed to be later embedded in metaheuristics.

Keywords: Monte Carlo sampling; orienteering problem; stochastic optimization

Introduction

The orienteering problem with stochastic travel and service times (OPSTS) was

first introduced in [1]. In this problem there is a starting point that we call the depot.

A vehicle goes out of that depot and has to serve some customers. The vehicle will

end its route at a destination node and does not have to return to the depot. There

is a global deadline and in most cases it is such that it is not possible to visit all the

customers before the deadline. For this reason, a subset of customers has to be selected

to be served. After selecting this subset, the vehicle tries to serve the customers in
the subset. For each service before the deadline it earns a reward, otherwise a penalty

is incurred. This paper examines how to approximate the objective function of the

144 Lecture Notes in Management Science Vol. 5: ICAOR 2013, Proceedings

problem more efficiently and with minimal loss in accuracy using Monte Carlo

sampling. This makes it ideal to embed it in a metaheuristic.

The rest of the paper is organized as follows. After a literature review in Section 2

and the formal problem definition in Section 3, different ways to compute the

objective function are presented in Section 4. In that section, a traditional exact

method is presented (Section 4.1) along with our proposed Monte Carlo approximation

of the objective function (Section 4.2). Extensive experimental results are presented in

Section 5 while Future Work is presented in Section 6 and Conclusions are drawn
in Section 7.

Related work

Several variants of the orienteering problem have been studied in the past. A recent
survey can be found on [2]. One of the most closely related to this paper is [1],

where the same problem is examined. In [1], the authors suggest exact solutions

for three simplified versions of the problem and then go on to suggest a variable

neighborhood search metaheuristic for the problem. To compute the objective

function of the problem, they use an exact method.

To the best of our knowledge apart from [1], there are few other papers on the

subject of stochastic variants of the orienteering problem. Related to OPSTS are

stochastic variants of the traveling salesman problem. In [3] and [4] Ant Colony

systems are proposed to solve the probabilistic traveling salesman problem and the

team orienteering problem with time windows which have similarities to OPSTS.

Another related paper to OPSTS is the time-constrained traveling salesman problem
with stochastic travel and service times (TCTSP). This problem was introduced

and solved for the first time in [5]. The problem is formulated as a two-stage stochastic

program and an integer L-shaped solution method is proposed for solving it. The

algorithm is used to solve problems of up to 35 customers. Another related problem is

the stochastic selective travelling salesperson problem (SSTP) introduced in [6].

In SSTP, travel and service times are stochastic as in this paper. However, the

deadline is being enforced by chance constraints and not by negative rewards as in

this paper. The authors propose both an exact and a heuristic approach to solve the

problem. A stochastic version of the orienteering problem is also examined in [7]

but the stochasticity is in the profits associated with each customer.

Problem definition

In this section, OPSTS is explained in details. The formal definition of OPSTS is

given, which is in accordance with [1]. Then, the cost evaluation is defined and

discussed.

V Papapanagiotou et al 145

Formal definition

Let be a set of customers. As a first phase, a subset of customers

has to be selected to represent the set of customers that it is believed that can be

serviced before the deadline. Let be the set of customers selected to be

serviced before the global deadline . The depot is defined as node 0. We assume

that there is an arc for all . Each customer is associated with a

reward value and a penalty value . To earn the reward ,the customer

must be served before the global deadline . If the customer fails to be

served before , a penalty is incurred.

Let be a non-negative random variable representing the time required to

traverse the arc . We assume that the distribution for is known for all

and . Let be a non-negative random variable representing the service at customer

 . Let the random variable be the arrival time at customer and a realisation

of . Let be a function representing the reward earned at customer when

arriving to at time . We assume that for , otherwise

 for .

Cost Evaluation

We define as tour of the customers the order in which customers are visited in

the selected set . Then the expected profit of the tour, which is also our objective

function, is:

(1)

We seek a tour such that for every .

Computing the objective function

In this section we discuss different ways to approximate the objective function (1).

Exact method

The method presented in this section, is the one used in [1] for computing the

objective function. Service times can be accounted for by convoluting them with

the travel time distribution of the relevant arc and therefore we do not treat them

separately. In this method, in order to compute the objective function we use the

assumption that travel times from to denoted as are distributed. The

distribution takes 2 parameters, a shape parameter and a scale parameter Each

 is distributed with a , parameter which is set as the mean

travel time and a parameter which for our tests is set to Travel times are

all independent from each other.

146 Lecture Notes in Management Science Vol. 5: ICAOR 2013, Proceedings

The arrival time of a node is the sum of the time values of all the arcs

 in the path from the depot to . Therefore, is a sum of distributed random

variables. If has a distribution for and all are independent

then

 . Clearly, since is a sum of distributed random

variables, it can be approximated by the function of the sum of all of the relevant

 variables added.

Considering that the Cumulative Distribution Function (CDF) of computes

the probability , and also that is distributed, by using the CDF of the

 distribution where is the parameter of the arc, the objective function

(1) can be rewritten as:
(2)

We assume that we have a way to compute using a function called .
We also assume that we have a function called distance that can compute the distance

between 2 nodes. We can now construct an algorithm called that

computes (2). The algorithm takes as input a solution vector (sol). Each member

of the solution vector is a node which represents a client that we chose to visit in

the particular solution. The nodes are ordered in the vector in the order that they

will be visited. The element of the solution vector is always the depot.
Therefore, in order to compute the sum in (2), we loop over all the solution

nodes(found in the vector), computing the objective function for each arc and

summing the results of the calculation.

Monte Carlo method

In this section we discuss our proposed approach to approximate the objective
function (1) more efficiently.

The objective function (1) is a core element of our solution and runs thousands

of times and therefore even a small improvement in speed can result in substantial

overall gains. In the objective function described in Section 4.1, a function

 is used to calculate the CDF of the function. The run time of this function

dominates the run time of the algorithm inside the loop, hence, it is the most appropriate

candidate for improvement. We can completely avoid using by using

Monte Carlo Sampling. A first approach would be for each travel time in each

solution to create many realisations and take the average to actually compute

each . However, creating many realisations of implies that for each arrival time

we use a function to produce distributed random variables (in this case distributed).

Because random generating functions also tend to be computationally expensive,

this method is not more efficient than the exact. Therefore, we need a method that

avoids calling random generating functions of distributions for every arc of our graphs.

We avoid these costly procedures by creating a precomputation matrix for each
type of stochastic variable in the problem. For example, in this paper we only have

V Papapanagiotou et al 147

one type of stochastic variable that represents the convolution of stochastic travel

and service times. Each precomputation matrix has as many submatrices as number of

samples, that represent realizations of a type of stochastic variable for a sample.

As an example, in this paper a submatrix is two dimensional and has realizations

of the random variable which represents the convolution of travel and service

times. We must note that in approximating the objective function using Monte

Carlo sampling, no property particular to some distribution is used and therefore it
can be generalized for any random distribution.

Once the precomputation matrix is created and we have many pregenerated

samples from every node to every node, we can compute an approximation of the

objective function very fast. In Algorithm 1 it is presented the implementation of

 which computes the objective function, given the precomputation

matrix . (the solution vector) is an array representing the order of the

nodes in the solution. is the number of samples to use and is the global

deadline. returns which is the approximative cost of the objective
function. It should be noticed that for each solution we calculate the sum of all

penalties, which is a negative value and we initialize our objective value with it.

Thus, we have precomputed all the penalties and subtracted them so now, while

each node is added before deadline we add back its penalty along with its reward.

function MonteCarloCost(sol,samples,vector,D):

for all i [1,...,samples] do
 i←0

 ← sum_of_penalties
 curTime ← 0

 while curTime ≤ D and i < |S| do

 curTime+ = vector[sample][sol[i]][sol[i + 1]]

 ← +ri+1 +ei+1
 i←i+1

 end while

end for

 ← /|samples|
return

Algorithm 1. The algorithmic representation of the function MonteCarloCost for OPSTS

Experimental results

In this section we present the results of experiments to assess the usefulness of the
usage of Monte Carlo sampling and compare it to the exact method. Monte Carlo

sampling can offer a reasonable approximation of the objective function in only a

fraction of the time and the time gains are increasing over time. The implementation

of the solutions is in C++ and the instances ran on a 4-core Intel Core I7-3615QM

148 Lecture Notes in Management Science Vol. 5: ICAOR 2013, Proceedings

2.3GHz using Mac OSX 10.8. The 4 cores shared 16GB of RAM and memory

consumption was never a problem. Firstly, we will compare the error of the Monte

Carlo approach to the traditional method and then we will compare the running times.

Fig. 1. Two graphs (a and b) showing the reduction of the error with respect to the number
of samples used in the Monte Carlo sampling. Different sizes of solutions are considered.
The deadline in this set is 50. The dataset size is 32 and 64 nodes respectively.

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Samples

E
rr

o
r(

%
)

Solution Size 10

Solution Size 20

Solution Size 30

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Samples

E
rr

o
r

(%
)

Samples/Error Graph

Solution Size 10

Solution Size 20

Solution Size 30

Solution Size 40

Solution Size 50

Solution Size 60

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of Samples

E
rr

o
r(

%
)

Solution Size 10

Solution Size 20

Solution Size 30

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Samples

E
rr

o
r

(%
)

Samples/Error Graph

Solution Size 10

Solution Size 20

Solution Size 30

Solution Size 40

Solution Size 50

Solution Size 60

V Papapanagiotou et al 149

Datasets and implementation details

Because this problem was introduced in [1], we mostly use the dataset generation

procedures used in that paper. Two of the datasets are based on the sets first appearing

in [8]. For all the datasets it is assumed that the graph of the customers is fully

connected and travel and service times are computed as described in the section

4.1. The penalty values, are generated as a fraction of the rewards in [1] and for

comparison purposes the same method is used in this paper. We consider fractions

of 0.1 for penalties in our experiments. In these experiments, for distances, the

Euclidean distance is used and for probability distribution for the travel and service

times, the distribution is used for comparison purposes with [1]. The distribution is

computed using the boost math library, which uses Lanczos approximation for the

computation [10].

Number of samples in relation to error

To demonstrate the utility of the Monte Carlo approach, first it needs to be shown

that it produces a reasonably low error and then choose the number of samples that

produce an acceptable error value. For this reason, we run experiments where we

measure the relative error of Monte Carlo sampling in relation to the Exact

Method, and present this value in relation to the number of samples used in Monte
Carlo sampling. We vary the number of samples from 100 to 1000 with step 100.

The solutions evaluated are generated randomly and then they are optimized by a

simple greedy algorithm. Optimization is used because random solutions can be of

such a low quality that not even one client can be served without surpassing the

deadline. Such cases generate bigger relative errors between the Monte Carlo

approach and exact methods than one would encounter in reality, as Monte Carlo

sampling is used in conjunction with an optimization method. The greedy algorithm

does not find new solutions but optimizes the order of visiting nodes in a given

solution. The results of the experiments can be seen in Fig.. The error is in com-

parison with the exact method presented. Solution Size is the number of nodes of

each solution given for evaluation. It can be observed that as we use more samples, the
error decreases. Furthermore, for the same number of samples, for larger solution

sizes more relative error is obtained. This can be justified if we consider that we

approximate the sum of more random variables (than in a smaller solution) and

thus we increase the accumulation of error from each estimation of the random

variables. Additionally, in both figures it can be seen that the error is less than

1.4% even with 100 samples for all solution sizes. Therefore, since the algorithm

gives a reasonable approximation of the objective function, it is worth it investigating

it further.

150 Lecture Notes in Management Science Vol. 5: ICAOR 2013, Proceedings

When Monte Carlo sampling is beneficial

In this paper, we use precomputation matrices to speed up Monte Carlo sampling.

Precomputation matrices introduce an overhead and it would be desirable to know

when we offset that overhead. The average time for 1 evaluation using Monte

Carlo sampling is:

(3)

According to (3) when the number of evaluations is very large
 , only the cost from the ()) function is impor-

tant and the cost of building the precomputation matrix does

not matter. To examine the problem more realistically, in Fig. we have plotted

 for solution sizes 30 and 60 using 100 and 200 number of samples

respectively. When this fraction is lower than 1 then the average time for 1 Monte

Carlo sampling evaluation is less than when using the ExactCost. In Fig., we can

observe that for solution size 30 we need to run the objective function 2000 times

or more to start having speed gains and for solution size 60 more than 4000. Be-

cause the objective function is meant to be called within a metaheuristic, where

100000 calls to the objective functions are typical if not too few, this method has

the potential to offer considerable speed gains.

Fig. 2.

 in relation to Number of Evaluations for solution sizes 30 and 60.

For solution size 30 we use 100 samples and for solution size 60 we use 200.

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

3.5

Number of Evaluations

M
o

n
te

C
a

rl
o

C
o

s
t

T
im

e
 /
 E

x
a

c
tC

o
s
t
T

im
e

Solution Size 60

Solution Size 30

V Papapanagiotou et al 151

Running time comparison

In this section we are doing a running time comparison between ExactCost and

MonteCarloCost. Table presents the comparison. Times are measured in seconds

and are taken as an average after running the respective algorithm 100 (#Evaluations)

times. In the first column we have the number of samples used in the MonteCarloCost

algorithm, the second time_exact has the running time of the ExactCost. Next
setup_time has the running time of creating the precomputation matrix and the

column time_mc the time of a typical execution of MonteCarloCost.

Table 1. Comparison of running times of the ExactCost and MonteCarloCost for Solution
Size 64 and 100 evaluations

The last column contains the result of a ratio. When it is smaller than 1 then

MonteCarloCost - without taking into account precomputation costs - is faster

than the ExactCost. According to (3) when the number of evaluations is very large

 , only the cost from the MonteCarloCost function is important.

From the column time_mc/time_exact, it is easily observable that the time consumed

for computing the objective function using Monte Carlo methods is a small fraction of

the time of the exact cost until a certain number of samples. Additionally, the error is

in most cases sufficiently small even by using 100 samples. This indicates a significant

gain and utility for the method.

152 Lecture Notes in Management Science Vol. 5: ICAOR 2013, Proceedings

Conclusions and future work

The objective function of many combinatorial transportation problems is computa-

tionally expensive and many times it is the time bottleneck of the algorithm. By

using Monte Carlo sampling with precomputation, the procedure can speed up the

computation of the objective function considerably with a small amount of error,

provided that the objective function is called a large number of times. Additionally,

Monte Carlo sampling can be modified easily in order to work with any probabil-
ity distribution. Finally, because metaheuristics need and use objective functions a

large number of times in order to return a solution to a problem, Monte Carlo

sampling is especially suited for speeding up a metaheuristic by calculating the

objective function more efficiently.

There is a number of improvements that can be made. Firstly, a suitable

metaheuristic to solve the problem has to be designed to run on top of the objective

function evaluator. Additionally, the metaheuristic can be developed in such a way

so that when a perturbation is executed, only a partial evaluation of the objective

function is needed. This can be achieved by a careful design of the perturbation

functions and by informing the objective function evaluator about the changes.

Furthermore, there can be a built-in recommendation mechanism for assisting the

choice of the number of samples used during sampling. Finally, Monte Carlo sampling
can be parallelized using the GPU. Some relevant work can be found in [9].

References

Campbell, A.M., Gendreau, M., Thomas, B.W.: The orienteering problem with stochastic
travel and service times. Annals of Operations Research 186 (2011) 61–81

Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: A survey.
European Journal of Operational Research 209(1) (2011) 1 – 10

Gambardella, L., Montemanni, R., Weyland, D.: Coupling ant colony systems with strong
local searches. European Journal of Operational Research 220(3) (2012) 831 – 843

Montemanni, R., Gambardella, L.: An ant colony system for team orienteering problems
with time windows. Foundations of Computing and Decision Sciences 34 (2009) 287–306

Teng, S.Y., Ong, H.L., Huang, H.C.: An integer l-shaped algorithm for time- constrained
traveling salesman problem with stochastic travel and service times. Asia-Pacific Journal
of Operational Research 21(02) (2004) 241–257

Tang, H., Miller-Hooks, E.: Algorithms for a stochastic selective travelling salesper- son
problem. Journal of The Operational Research Society 56 (2005) 439–452

Ilhan, T., Iravani, S.M.R., Daskin, M.S.: The orienteering problem with stochastic profits.

Iie Transactions 40 (2008) 406–421
Tsiligirides, T.: Heuristic Methods Applied to Orienteering. Journal of the Operational

Research Society 35 (1984) 797–809
Weyland, D., Montemanni, R., Gambardella, L.M.: A metaheuristic framework for stochastic

combinatorial optimization problems based on gpgpu with a case study on the probabilistic
traveling salesman problem with deadlines. Journal of Parallel and Distributed Computing
73(1) (2013) 74 – 85 Metaheuristics on GPUs.

http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/backgr
ounders/lanczos.html.

