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Abstract. In this paper, a variant of the orienteering problem in which the travel and service 
times are stochastic, is examined. Given a set of potential customers, a subset of them has to be 
selected to be serviced by the end of the day. Every time a delivery to a selected customer is 
fulfilled before the end of the day, a reward is received, otherwise, if the delivery is not completed, 

a penalty is incurred. The target is to maximise the expected income (rewards-penalties) of the 
company. The focus of this paper is to evaluate a sampling based way to approximate the 
objective function which is designed to be later embedded in metaheuristics. 
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Introduction 

The orienteering problem with stochastic travel and service times (OPSTS) was 

first introduced in [1]. In this problem there is a starting point that we call the depot. 

A vehicle goes out of that depot and has to serve some customers. The vehicle will 

end its route at a destination node and does not have to return to the depot. There 

is a global deadline and in most cases it is such that it is not possible to visit all the 

customers before the deadline. For this reason, a subset of customers has to be selected 

to be served. After selecting this subset, the vehicle tries to serve the customers in 
the subset. For each service before the deadline it earns a reward, otherwise a penalty 

is incurred. This paper examines how to approximate the objective function of the 
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problem more efficiently and with minimal loss in accuracy using Monte Carlo 

sampling. This makes it ideal to embed it in a metaheuristic.  

The rest of the paper is organized as follows. After a literature review in Section 2 

and the formal problem definition in Section 3, different ways to compute the 

objective function are presented in Section 4. In that section, a traditional exact 

method is presented (Section 4.1) along with our proposed Monte Carlo approximation 

of the objective function (Section 4.2). Extensive experimental results are presented in 

Section 5 while Future Work is presented in Section 6 and Conclusions are drawn 
in Section 7.  

Related work  

Several variants of the orienteering problem have been studied in the past. A recent 
survey can be found on [2]. One of the most closely related to this paper is [1], 

where the same problem is examined. In [1], the authors suggest exact solutions 

for three simplified versions of the problem and then go on to suggest a variable 

neighborhood search metaheuristic for the problem. To compute the objective 

function of the problem, they use an exact method. 

To the best of our knowledge apart from [1], there are few other papers on the 

subject of stochastic variants of the orienteering problem. Related to OPSTS are 

stochastic variants of the traveling salesman problem. In [3] and [4] Ant Colony 

systems are proposed to solve the probabilistic traveling salesman problem and the 

team orienteering problem with time windows which have similarities to OPSTS. 

Another related paper to OPSTS is the time-constrained traveling salesman problem 
with stochastic travel and service times (TCTSP). This problem was introduced 

and solved for the first time in [5]. The problem is formulated as a two-stage stochastic 

program and an integer L-shaped solution method is proposed for solving it. The 

algorithm is used to solve problems of up to 35 customers. Another related problem is 

the stochastic selective travelling salesperson problem (SSTP) introduced in [6]. 

In SSTP, travel and service times are stochastic as in this paper. However, the 

deadline is being enforced by chance constraints and not by negative rewards as in 

this paper. The authors propose both an exact and a heuristic approach to solve the 

problem.  A stochastic version of the orienteering problem is also examined in [7] 

but the stochasticity is in the profits associated with each customer. 

Problem definition 

In this section, OPSTS is explained in details. The formal definition of OPSTS is 

given, which is in accordance with [1]. Then, the cost evaluation is defined and 

discussed.  
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Formal definition 

Let           be a set of customers. As a first phase, a subset of customers 

has to be selected to represent the set of customers that it is believed that can be 

serviced before the deadline. Let     be the set of customers selected to be 

serviced before the global deadline  . The depot is defined as node 0. We assume 

that there is an arc       for all      .  Each customer     is associated with a 

reward value    and a penalty value   . To earn the reward    ,the customer     

must be served before the global deadline  . If the customer     fails to be 

served before  , a penalty    is incurred. 

Let       be a non-negative random variable representing the time required to 

traverse the arc      . We assume that the distribution for      is known for all   

and  . Let    be a non-negative random variable representing the service at customer  

 . Let the random variable    be the arrival time at customer   and     a realisation 

of   . Let        be a function representing the reward earned at customer   when 

arriving to   at time    . We assume that            for       , otherwise 

            for      . 

Cost Evaluation 

We define as tour of the customers   the order in which customers are visited in 

the selected set  . Then the expected profit of the tour, which is also our objective 

function, is: 

(1) 

                               
   

 

We seek a tour    such that            for every  . 

Computing the objective function 

In this section we discuss different ways to approximate the objective function (1). 

Exact method 

The method presented in this section, is the one used in [1] for computing the 

objective function. Service times can be accounted for by convoluting them with 

the travel time distribution of the relevant arc and therefore we do not treat them 

separately. In this method, in order to compute the objective function we use the 

assumption that travel times from   to   denoted as      are   distributed. The   

distribution takes 2 parameters, a shape parameter   and a scale parameter    Each 

     is   distributed with a              , parameter which is set as the mean 

travel time and a   parameter which for our tests is set to      Travel times      are 

all independent from each other. 
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The arrival time    of a node is the sum of the time values     of all the arcs 

    in the path from the depot to  .  Therefore,    is a sum of   distributed random 

variables. If    has a          distribution for           and all    are independent 

then     
 
             

 
    . Clearly, since    is a sum of    distributed random 

variables, it can be approximated by the   function of the sum of all    of the relevant 

     variables added. 

Considering that the Cumulative Distribution Function (CDF) of    computes 

the probability        , and also that    is   distributed, by using the CDF of the 

  distribution     where    is the   parameter   of the     arc, the objective function 

(1) can be rewritten as: 
(2) 

                             
   

 

We assume that we have a way to compute     using a function called        . 
We also assume that we have a function called distance that can compute the distance 

between 2 nodes. We can now construct an algorithm called                that 

computes (2). The algorithm takes as input a solution vector (sol). Each member 

of the solution vector is a node which represents a client that we chose to visit in 

the particular solution. The nodes are ordered in the vector in the order that they 

will be visited. The     element of the solution vector is always the depot. 
Therefore, in order to compute the sum in (2), we loop over all the solution 

nodes(found in the vector    ), computing the objective function for each arc and 

summing the results of the calculation.  

Monte Carlo method 

In this section we discuss our proposed approach to approximate the objective 
function (1) more efficiently. 

The objective function (1) is a core element of our solution and runs thousands 

of times and therefore even a small improvement in speed can result in substantial 

overall gains. In the objective function described in Section 4.1, a function  

        is used to calculate the CDF of the   function. The run time of this function 

dominates the run time of the algorithm inside the loop, hence, it is the most appropriate 

candidate for improvement. We can completely avoid using          by using 

Monte Carlo Sampling. A first approach would be for each travel time      in each 

solution to create many realisations       and take the average to actually compute 

each     .  However, creating many realisations of      implies that for each arrival time 

we use a function to produce distributed random variables (in this case   distributed). 

Because random generating functions also tend to be computationally expensive, 

this method is not more efficient than the exact. Therefore, we need a method that 

avoids calling random generating functions of distributions for every arc of our graphs. 

We avoid these costly procedures by creating a precomputation matrix for each 
type of stochastic variable in the problem. For example, in this paper we only have 
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one type of stochastic variable that represents the convolution of stochastic travel 

and service times. Each precomputation matrix has as many submatrices as number of 

samples, that represent realizations of a type of stochastic variable for a sample. 

As an example, in this paper a submatrix is two dimensional and has realizations 

of the random variable     which represents the convolution of travel and service 

times. We must note that in approximating the objective function using Monte 

Carlo sampling, no property particular to some distribution is used and therefore it 
can be generalized for any random distribution. 

Once the precomputation matrix is created and we have many pregenerated 

samples from every node to every node, we can compute an approximation of the 

objective function very fast. In Algorithm 1 it is presented the implementation of 

               which computes the objective function, given the precomputation 

matrix       .     (the solution vector) is an array representing the order of the 

nodes in the solution.         is the number of samples to use and   is the global 

deadline.                returns   which is the approximative cost of the objective 
function. It should be noticed that for each solution we calculate the sum of all 

penalties, which is a negative value and we initialize our objective value   with it. 

Thus, we have precomputed all the penalties and subtracted them so now, while 

each node is added before deadline we add back its penalty along with its reward. 

 

function MonteCarloCost(sol,samples,vector,D): 

for all i   [1,...,samples] do  
    i←0 

      ← sum_of_penalties  
    curTime ← 0 

    while curTime ≤ D and i < |S| do 

        curTime+ = vector[sample][sol[i]][sol[i + 1]]  

          ←   +ri+1 +ei+1 
        i←i+1 

    end while  

end for 

   ←   /|samples|  
return   

Algorithm 1. The algorithmic representation of the function MonteCarloCost for OPSTS 

Experimental results 

In this section we present the results of experiments to assess the usefulness of the 
usage of Monte Carlo sampling and compare it to the exact method. Monte Carlo 

sampling can offer a reasonable approximation of the objective function in only a 

fraction of the time and the time gains are increasing over time. The implementation 

of the solutions is in C++ and the instances ran on a 4-core Intel Core I7-3615QM 
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2.3GHz using Mac OSX 10.8. The 4 cores shared 16GB of RAM and memory 

consumption was never a problem. Firstly, we will compare the error of the Monte 

Carlo approach to the traditional method and then we will compare the running times. 

 

 

 

Fig. 1. Two graphs (a and b) showing the reduction of the error with respect to the number 
of samples used in the Monte Carlo sampling. Different sizes of solutions are considered. 
The deadline in this set is 50. The dataset size is 32 and 64 nodes respectively. 
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Datasets and implementation details 

Because this problem was introduced in [1], we mostly use the dataset generation 

procedures used in that paper. Two of the datasets are based on the sets first appearing 

in [8]. For all the datasets it is assumed that the graph of the customers is fully 

connected and travel and service times are computed as described in the section 

4.1. The penalty values, are generated as a fraction of the rewards in [1] and for 

comparison purposes the same method is used in this paper. We consider fractions 

of 0.1 for penalties in our experiments. In these experiments, for distances, the 

Euclidean distance is used and for probability distribution for the travel and service 

times, the   distribution is used for comparison purposes with [1]. The   distribution is 

computed using the boost math library, which uses Lanczos approximation for the 

computation [10].  

Number of samples in relation to error 

To demonstrate the utility of the Monte Carlo approach, first it needs to be shown 

that it produces a reasonably low error and then choose the number of samples that 

produce an acceptable error value. For this reason, we run experiments where we 

measure the relative error of Monte Carlo sampling in relation to the Exact 

Method, and present this value in relation to the number of samples used in Monte 
Carlo sampling. We vary the number of samples from 100 to 1000 with step 100. 

The solutions evaluated are generated randomly and then they are optimized by a 

simple greedy algorithm. Optimization is used because random solutions can be of 

such a low quality that not even one client can be served without surpassing the 

deadline. Such cases generate bigger relative errors between the Monte Carlo 

approach and exact methods than one would encounter in reality, as Monte Carlo 

sampling is used in conjunction with an optimization method. The greedy algorithm 

does not find new solutions but optimizes the order of visiting nodes in a given 

solution. The results of the experiments can be seen in Fig.. The error is in com-

parison with the exact method presented. Solution Size is the number of nodes of 

each solution given for evaluation. It can be observed that as we use more samples, the 
error decreases. Furthermore, for the same number of samples, for larger solution 

sizes more relative error is obtained. This can be justified if we consider that we 

approximate the sum of more random variables (than in a smaller solution) and 

thus we increase the accumulation of error from each estimation of the random 

variables. Additionally, in both figures it can be seen that the error is less than 

1.4% even with 100 samples for all solution sizes. Therefore, since the algorithm 

gives a reasonable approximation of the objective function, it is worth it investigating 

it further. 
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When Monte Carlo sampling is beneficial 

In this paper, we use precomputation matrices to speed up Monte Carlo sampling. 

Precomputation matrices introduce an overhead and it would be desirable to know 

when we offset that overhead. The average time for 1 evaluation using Monte 

Carlo sampling is: 

(3) 
               

            
              

 

According to (3) when the number of evaluations is very large              
 , only the cost from the                (           )) function is impor-

tant and the cost of building the precomputation matrix                 does 

not matter. To examine the problem more realistically, in Fig. we have plotted 
                   

              
 for solution sizes 30 and 60 using 100 and 200 number of samples 

respectively. When this fraction is lower than 1 then the average time for 1 Monte 

Carlo sampling evaluation is less than when using the ExactCost. In Fig., we can 

observe that for solution size 30 we need to run the objective function 2000 times 

or more to start having speed gains and for solution size 60 more than 4000. Be-

cause the objective function is meant to be called within a metaheuristic, where 

100000 calls to the objective functions are typical if not too few, this method has 

the potential to offer considerable speed gains. 
 

 

Fig. 2.                    

              
 in relation to Number of Evaluations for solution sizes 30 and 60. 

For solution size 30 we use 100 samples and for solution size 60 we use 200. 
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Running time comparison 

In this section we are doing a running time comparison between ExactCost and 

MonteCarloCost. Table presents the comparison. Times are measured in seconds 

and are taken as an average after running the respective algorithm 100 (#Evaluations) 

times. In the first column we have the number of samples used in the MonteCarloCost 

algorithm, the second time_exact has the running time of the ExactCost. Next 
setup_time has the running time of creating the precomputation matrix and the 

column time_mc the time of a typical execution of MonteCarloCost.  

Table 1.  Comparison of running times of the ExactCost and MonteCarloCost for Solution 
Size 64 and 100 evaluations 

 

The last column contains the result of a ratio. When it is smaller than 1 then 

MonteCarloCost - without taking into account precomputation costs - is faster 

than the ExactCost. According to (3) when the number of evaluations is very large 

              , only the cost from the MonteCarloCost function is important. 

From the column time_mc/time_exact, it is easily observable that the time consumed 

for computing the objective function using Monte Carlo methods is a small fraction of 

the time of the exact cost until a certain number of samples. Additionally, the error is 

in most cases sufficiently small even by using 100 samples. This indicates a significant 

gain and utility for the method. 
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Conclusions and future work 

The objective function of many combinatorial transportation problems is computa-

tionally expensive and many times it is the time bottleneck of the algorithm. By 

using Monte Carlo sampling with precomputation, the procedure can speed up the 

computation of the objective function considerably with a small amount of error, 

provided that the objective function is called a large number of times. Additionally, 

Monte Carlo sampling can be modified easily in order to work with any probabil-
ity distribution. Finally, because metaheuristics need and use objective functions a 

large number of times in order to return a solution to a problem, Monte Carlo 

sampling is especially suited for speeding up a metaheuristic by calculating the 

objective function more efficiently. 

There is a number of improvements that can be made. Firstly, a suitable 

metaheuristic to solve the problem has to be designed to run on top of the objective 

function evaluator. Additionally, the metaheuristic can be developed in such a way 

so that when a perturbation is executed, only a partial evaluation of the objective 

function is needed. This can be achieved by a careful design of the perturbation 

functions and by informing the objective function evaluator about the changes. 

Furthermore, there can be a built-in recommendation mechanism for assisting the 

choice of the number of samples used during sampling. Finally, Monte Carlo sampling 
can be parallelized using the GPU. Some relevant work can be found in [9]. 
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