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Abstract. Distribution identifiability issues arise quite naturally through competing risks in 
reliability. In particular, modeling and analysis of recurrent events which include the impact 
maintenance has on the lifetime distribution of repairable systems is an interesting practical 

application. This paper discusses the problem of modeling the joint behaviour of condition-based 
preventive maintenance (PM) and corrective maintenance (CM) in the competing risk context 
using copulas. Specifically, how expert judgement and accelerated life testing data can be 
used to estimate the copula dependence parameter and quantify its uncertainty through 
Monte-Carlo simulations is discussed. 
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Introduction 

Competing risks in industrial accelerated life testing 

Systems generally fail from different causes and these are often present in industrial 

accelerated life testing (ALT). When cause and lifetime information is available, 

competing risk theory provides the appropriate model for analyzing failure data. 

The presence of competing failure modes in industrial ALT has been studied for 
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some time, see e.g McCool (1978), Klein and Basu (1981, 1982a, 1982b). Nelson 

(1990) contains an entire chapter on competing failure modes in ALT.  

The interpretation and analysis of data concerning competing failure causes in 

engineering, biostatistical and related application fields remains an open problem. 

Denote by J  the cause of system failure for 1,...,J d . In a typical competing 

risk situation, these d failure causes are competing to be responsible for terminating 

the system’s service at each stress level. What is observed is the time to first failure 

0T   (possibly censored) and the failure cause J . If T  is censored, J  will remain 

unknown. Hence only the pair ( , )T J  is in general observable, called the identified 

minimum (Heckman and Honore, 1989; Crowder, 1994).  

Depending on the application a vector of covariates 
1( ,..., )pz z z   recording 

study units characteristics, stress levels etc. may also be observed. 

Theoretical approaches to the competing risk problem introduce hypothetical or 

latent failure time random variables 
1,..., dY Y , 0 jY   representing system failure 

times corresponding to the d failure causes 1,...,J d . In actual study conditions 

when all risks are acting, only the earliest of these theoretical failure times 

1min( ,..., )dT Y Y  is observed along with J , the cause of failure. Hence T  is 

formally the lifetime of a series or weakest link system having d  components 

where system failures are a result of a unique failing component. As used here, series 

system refers to how system failure depends on component failure, not physical 

connections of components.  

Under the latent failure time approach, competing risk problems concerning 

interrelations among failure causes and the effects of cause removal are formulated 

in terms of the 'jY s  and the joint survival (multiple decrement) function  
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which is considered absolutely continuous and satisfying (0,...,0) 1S   and 

( ,..., ) 0S     where each 0jt  . This model is necessary whenever study 

questions are posed in terms of the (marginal) survival distribution of failure time 

from a specific cause when others are removed. This is particularly so in reliability 

applications where it is often interesting to ask the question: “What would be the 

effect of eliminating a failure cause on the reliability specification of the system?” 

Cause removal can in practice be achieved through system redesign for example.  

Though a formal mathematical model, the latent failure time model in general 

presents problems of interpretation and data analysis. It is however of value in 

situations where random censorship is modelled as a competing risk arising from a 

mechanism external to the failure process under consideration (Prentice et. al., 

1978). A typical example in reliability (see eg. Cooke, 1996) is the effect maintenance 

has on the basic failure time distribution of a repairable system as follows. Denote 

by 
2X  the random time to system failure if no preventive maintenance (PM) were 

performed. System failure can be avoided by a potential condition-based PM action 

that can occur at random time
1X . Thus at each stress level, the maintained system 

can be taken out of service by corrective maintenance (CM) or PM which are the 
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two competing risk variables. The corresponding latent failure time random variables 

1X  and 
2X  represent times to a maintenance action. 

This probability structure allows condition-based PM (random censoring) to be 

one of the causes responsible for taking the system out of service. It is a unique 

competing risk formulation in that it guarantees an underlying system failure 

mechanism that is not influenced by the presents of random censoring. Besides 

attaching physical meaning to a latent failure time to a CM action, it also guarantees 

that the marginal distribution arising from the removal of censoring is the basic 

failure time distribution of the system. Undoubtedly, the system failure time 

distribution is the relevant target of estimation from which reliability metrics are 

derived. Hence, the aim of this paper is to address the problem of estimating the 

basic failure time distribution for a stochastically and continuously deteriorating 

repairable system with the maintenance effect (a competing risk) removed. 

Modeling the CM - PM process in a competing risk framework 

A well-known difficulty with the latent failure time approach (Tsiatis, 1975) is that 

neither the joint nor the marginal survival functions of the competing risk variables are 

in general identifiable unless if the risks are independent. Since CM and PM are 

linked through the degradation process of the system, they cannot be taken to be 

independent. Rather, they are assumed to have a basic dependence structure at each 

stress level and hence special and more complicated statistical methods are required. 

An obvious approach that allows for dependent competing risks is to place 

parametric restrictions on the joint survival function 
1 2( , )S t t  in order to study 

interrelation more generally. Within such parametric models, parameters that 

describe possible dependencies between latent failure times 
1X  and 

2X  may be 

estimated. Crucially however, there must be external evidence to justify the assumed 

parametric model since dependence arises from a model assumption that cannot be 

tested by the competing risk data alone. Otherwise a non-zero value of the estimated 

dependence parameter within such parametric models is not necessarily an indication 

of dependence between the competing risk variables. 

The problem with placing parametric restrictions on 
1 2( , )S t t  is that the observable 

competing risks data do not allow one to distinguish between the assumed model 

and one with independent risks. Hence in addition to the uncertainty due to sampling 

error, there is also the extra problem of model uncertainty. Other approaches (see 

e.g. David & Moeschberger, 1978; Meeker, Escobar & Hong, 2009) collapse several 

related failure modes into fewer groups such that the resulting failure modes are 

approximately independent and hence identifiable. Depending on the application, 

interest may be in estimating the subsurvival functions only (Crowder, 2001) 

which are identifiable. In this study however, identifiability issues remain since 

the problem is to infer the marginal survival functions when dependent competing 

risks are acting. 
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The Copula-Dependent Competing Risks Model in ALT 

When in service, degrading systems tend to deliver some kind of signal which is a 

warning that a failure is approaching. If the signal is detected, a PM is performed 

to avoid or postpone system failure which is generally perceived to be more costly 

than degraded or non-critical failure. To be efficient however, PM has to be per-

formed just before a failure occurs. Hence the dependence structure between CM 

and PM is the degree to which the occurrence of high (low) values for the one variable 
impacts on the probability of occurrence of values of the other variable. This notion 

of dependence is a matter of relative ranks and is therefore completely based on 

copulas.  

Estimation of the copula dependence parameter(s) from competing risk data is 

in general a difficult problem since a set of n  pair-wise observations is required. 

Rather, what is observed is the random variable 1 2min( , )Z X X  together with 

the identity of the failure mode that achieved the minimum. Hence, the analysis 

inevitably has to rely on expert judgments. The use of expert judgement within 

reliability and science where it is increasing recognised as just another type of 

scientific data is not new (see e.g. van Noortwijk et al 1992; Kurowicka and 

Cooke 2006) and the numerous references therein. The drawback of this approach 

is that eliciting dependence from experts in situations where no ‘hard data’ are 

available on the variables of interest is a difficult  judgmental task. 

A unique copula associated with a pair )X,X( 21  is invariant under strictly in-

creasing transformations of the marginals. Since the dependence between 1X  and

2X  is characterised by this copula, a faithful measure of dependence also needs 

to exhibit the same invariance property. One such measure is the rank correla-

tion which measures the degree of monotone relationships between variables. The 

best known rank based distribution-free measures of association are Spearman’s rho 

and Kendall’s . In terms of the copula function (Carriere, 1994; Nelsen, 1995), 

they are given by  

312 2121221
  duud)u,u(C

I
XX  and 

1),(),(4 2121221
  uuCduuC

I
XX  respectively. 

Parameterization of families of copulae by the rank correlation implies that the 

rank correlation can be taken as the primary parameter. Admittedly, the rank 

correlation is a numerical quantity with an infinite number of possible values. 

Thus, judgements about the likelihood and uncertainty of the rank correlation value 

can be properly expressed through an elicited probability distribution. But the expert 

can only make specific judgements about certain summaries of the distribution, 
usually the mean or a number of percentiles. Constructing a fully specified continuous 

probability distribution from a finite number of these specific judgements remains 

an ill-posed problem since many other possible distributions would have fitted the 

elicited judgements equally well. Even if multiple experts were available, they 

will most likely have different degrees of belief. Hence though independent, the 

elicited summaries may not be identically distributed.  
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Contribution of the paper 

This paper contributes to the literature by showing through a Monte Carlo simulation 

study how expert opinion on observable quantities and ALT data can be used to 

characterise the joint behaviour of competing risks at design stress. The practical 

reason for eliciting on observable quantities only is that experts are more comfortable 

with answering questions on observables. The rank correlation, which is the target 

variable in this study is clearly not an observable quantity. Hence, elicitation variables 
are required to indirectly infer the appropriate correlation number.  

Spearman’s rho is a widely used measure of rank correlation largely because its 

computation is very simple i.e. it is Pearson’s product moment correlation computed 

on the ranks assigned to the observations and average ranks. The major disadvantage 

of Spearman’s rho is that it has no simple direct interpretation in terms of probabilities 

and is thus difficult to quantify. Though usually considered more difficult to compute 

than Spearman’s rho, Kendall’s , an alternative rank correlation does have a 

simple and direct interpretation in terms of probabilities of observing concordance 

and discordance pairs (Conover, 1999). While uncertainty manifests itself in various 

ways (Booker & Ross, 2011), probability theory is widely accepted as the leading 

theory when measuring uncertain quantities or quantifying the uncertainty. Because of 

its interpretation in terms of observables, Kendall’s   (rank correlation henceforth) is 

preferred to Spearman’s rho in the simulation study.  

Assuming a large number of test units from the same population at each stress 

level, then iZ , 1,2,...i   are independent copies of Z . As is often the case in 

practice, this paper considers the case where only a few prototype systems are 

available for testing. Sufficient failure data in ALT are therefore obtained by 

renewing failed systems and testing continuously. Hence the process  1 2, ,...Z Z  

defines a renewal process associated with Z . To yield the right data structure, 

latent failure time random variables 
1X  and 

2X  for a repairable system at each 

stress level are simulated from a model tailored for cases where PM censor critical 

failure. Using expert judgement, the rank correlation value (and hence the copula 

dependence parameter) is obtained from simulated data. In the case of the Clayton 

copula for example, the copula dependence parameter   is given by 
2

1








.  

The simulations are repeated a number of times yielding several rank correlation 

values from which few summaries of the expert’s distribution are inferred. The 

uncertainty in Kendall’s   is modeled by fitting a subjective distribution to the 

elicited distribution summaries from the expert. The rank correlation (and hence 

the copula parameter) is estimated by a specified percentile of the fitted distribution. 

Given the fitted copula model and a competing risk sample at each stress level, 

numerical methods are used to infer the marginal distribution of 2X  at design 

stress which is of interest at design stress. 
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