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Abstract. We consider the capacitated economic lot-sizing problem (CLSP) with stationary 
capacities and concave cost functions with non-speculative motives. Under these assumptions 
we show that there is an optimal solution of the problem that is composed only by subplans 
that can be computed in linear time, which means that the problem can be solved in O(T 3) 
computation time. 
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Introduction 

The capacitated economic lot-sizing problem (CLSP) refers to the problem of 

determining the quantities to produce at each period in order to meet the demand 

requirements of a single product on time, minimizing the sum of the costs involved. 

The numbers of units that can be produced at each period are limited by a maximum 

value. The CLSP is an NP-hard problem in general, and even for special cases on 

the cost functions and/or the capacity pattern (Bitran and Yanasse, 1982; Florian 

et al. 1980). For the case of concave cost functions and stationary capacities (i.e., 

equal capacity upper-bounds for each period) Florian and Klein (1971) develop an 
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effective algorithm of O(T 4) time. More recently, faster algorithms of O(T 3) and 

O(T 2logT) times have been suggested by van Hoesel and Wagelmans (1996) for 

the case of linear inventory holding costs and by van Vyve (2007) for the case of 

linear costs with non-speculative motives, respectively. Bitran and Yanasse (1982) 

propose several polynomial time algorithms for different cases of set-up, holding 

and unit production costs, and different capacity patterns. Chung and Lin (1988) 

provide an algorithm of O(T 2) time for the CLSP with non-increasing set-up and 

unit production costs and non-decreasing capacity pattern. van den Heuvel and 
Wagelmans (2006) also consider this problem, providing other O(T 2) time algorithm 

which may run faster in practice. Chen et al. (2008) provide a pseudo-polynomial 

time algorithm for the same CLSP case but with more general cost functions. 

More recently, Ng et al. (2010) suggest an approximation algorithm for the CLSP 

with backlogging and a monotone cost structure and Okhrin and Richter (2011) 

analyze the CLSP with minimum order quantity restrictions. For surveys on the 

CLSP and extensions, we refer the readers to Brahimi et al. (2006), Karimi et al. 

(2003), Pan et al. (2009) and Robinson et al. (2009). 

The main contribution of this paper is to show that the subplans composing an 

optimal solution of the CLSP with stationary capacities and concave cost functions 

with non-speculative motives (i.e. when it is profitable to produce as late as possible) 

have a particular structure and can be obtained by means of a linear time procedure. 
This result implies that the running time of the well-known algorithm of Florian 

and Klein (1971) for the CLSP can be improved from O(T 4) time to O(T 3) time 

for the case of non-speculative motives on the costs. According to our best 

knowledge, our approach can be applied over situations that are not covered by 

previous related works in the literature. In addition, we want to note that our approach 

is simpler than the approach of Van Vyve (2007). 

The remainder of the paper is organized as follows. Section 2 provides the notation 

and the mathematical formulation for the problem and some basic properties of the 

CLSP. In Section 3 we prove that there is an optimal solution of the CLSP with 

stationary capacities and concave cost functions with non-speculative motives, 

which is composed only by a particular kind of subplans. In Section 4 we describe 
the linear time procedure for obtaining this particular kind of production subplans 

which means that the problem can be solved in O(T 3) time. Finally, Section 5 

concludes the paper. 

 Notation and mathematical formulation 

We consider the CLSP with a finite planning horizon length T > 0. For each period 

Tt ,...,1 , there is a known demand requirement 0tD  which must be satisfied 

on time by producing on the same period or in a previous one the quantity 0tx . 

Backlogging demand is not allowed and the production quantity at each period is 

limited by tC  with  tC0  and Tt ,...,1 . There are costs for carrying out 

the production and for storing a positive quantity 0ty  at each period Tt ,...,1 . 

Henceforth, we assume that the production cost function )(tf  and the holding 
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inventory cost function )(th  are non-decreasing concave functions on the interval 

 ,0 , and equal to zero when its argument is zero or negative, with Tt ,...,0 . 

It is also assumed that the initial inventory and the lead-time are equal to zero. The 

objective is to determine the quantities tx  to produce at each period in order to 

meet the demand requirements on time fulfilling the capacity constraints and 

minimizing all the involved costs. The problem described above can be formulated 

as the following Mixed Integer Linear Programming (MILP) problem: 
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Constraint (1) is the inventory equilibrium equation that ensures that demand is 

met. Constraint (2) states that the initial inventory quantity must be zero. Constraint 

(3) represents the production capacity limit and constraint (4) the set of possible 

values for the decision variables. Since the decision variables ty  can be replaced 

by )( 11 tt Dx  , with ijx  and ijD  the accumulated production and demand between 

periods i and j respectively, with Tji 1 , the problem formulated above reduces 

to find the set of feasible plans ),...,( 1 Txxx  . The set of feasible plans is not 

empty if and only if the accumulated demand of the first t periods does not exceed 

the accumulated capacities over these periods, formally:  
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Henceforth we assume that expression (5) is fulfilled. Since the objective function 

of (P) is a concave function and the constraints (1) – (4) define a closed bounded 

convex set, there is an optimal solution of the CLSP that is an extreme point of 

this set. Florian and Klein (1971) proved that the extreme-point solutions are 

composed only by subplans ),...,( 1 jiij xxS   called capacity constrained sequence 

such that 0 ji yy  and 0ty , for all t in Tjti 0 , and the production 

quantities of the periods are zero or equal to the capacity, except in at most one 

period. Based on this result, they provide an O(T 4) time algorithm for solving the 

CLSP with stationary capacities and general concave cost functions. Thus, for the 

remainder of the paper we consider a stationary capacity-pattern, i.e., CCt   for 

all Tt ,...,1 .  
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In the following sections, we show that the algorithm of Florian and Klein 

(1971) can be improved from O(T 4) to O(T 3) time if it is also assumed a non-

speculative type of cost structure. 

The ascending capacity constrained sequences of the CLSP  

In this section we prove that for the CLSP with non-speculative motives on the 

costs and stationary capacity-pattern, there is an optimal solution that is composed 

only by particular subplans that we refer as ascending capacity constrained sequences, 

since the production quantities in this kind of sequences is increasing over time. 

This kind of sequences was introduced in Chung and Lin (1988). We begin providing 

the definitions needed for the proof. 

Definition 1. We say that the cost functions of the CLSP are non-speculative if the 

expressions below are fulfilled: 
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Expression (6.1) states that it is profitable to transfer forward all the production 

quantity from one active period to another period initially inactive, and (6.2) that it 

is profitable to transfer forward at least one unit between two active periods. 

Expressions (6.1) and (6.2) are fulfilled in different settings of interest, e.g., when 

all the costs involved are concave functions and either stationary or non-

increasing.  In particular, we note that there are cost structures satisfying Definition 

1 which are not covered by previous related works. For instance, consider a CLSP 

instance of T periods where xcK)x(f p
t

p
tt  , with tK P

t  ,  1P
tc , the set-up 

and unit costs for production respectively, ht(x) = 2x +   , and stationary capacity 

C, i.e., Cxt  ,  for each period T,...,t 1  respectively. This particular cost structure 

satisfies expressions (6.1) and (6.2) but it is not supported by the algorithms of 

Chung and Lin (1988), van den Heuvel and Wagelmans (2006), Chen et al. 

(2008), van Hoesel and Wagelmans (1996) and Van Vyve (2007). 

Definition 2. We say that a capacity constrained sequence ),...,( 1 jiij xxA  is an 

ascending capacity constrained sequence (ACC sequence) whenever the period 

with a positive quantity below capacity, if it exists, is the first among all the positive 

periods in the sequence, i.e. jji xxx   11 ... , Tji 0 . 
 

(6.1) 

(6.2) 
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Proposition 1. Consider the CLSP with stationary capacities and non-speculative 

motives on the costs according to Definition 1. Then, the solutions of the CLSP 

composed only by ACC sequences according to Definition 2 are dominant, i.e., 

given a feasible solution of the CLSP for which there is at least one sequence that 

is not an ACC sequences, we can determine a new feasible solution composed only 

by ACC sequences with at most the same cost than the original. 

Proof. Consider a feasible solution ),...,( 1 Txxx   of the CLSP composed only by 

capacity constrained sequences. Without loss of generality, suppose that x has only 

one sequence S  that is not an ACC sequence (the fractional period is not the 

first among the positive periods in the sequence). This means that there are two 

consecutive periods i and j such that 0 ji xxC  with Tji  0 . 

Then, define  jjii xCyyy   ,,...,,min 11  and consider the following definition 

of a new feasible solution z : 
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We note that one of the two following cases is fulfilled for z: 1) Cz j  ; or 2) 

0ty , for some t in jti  . If case 1) is fulfilled, then the production quantity 

of period i in the new solution z  is below capacity since C 0 . In the case 

that period i is not the first positive period in the sequence, we can determine a 

new   for period i and the immediately previous period k of the sequence such 

that 0 ik xxC , with   ik . We repeat this process until the first 

positive period in the sequence is reached. On the other hand, if case 2) is fulfilled, 

we note that the sequence S  has been decomposed into two new sequences tS  

and tS  for some t with jti  . We note that sequence tS  is an ACC sequence, 

since all the positive periods are at capacity. In the case of the sequence tS , the 

period i is below capacity. If it is not the first positive period we proceed as we 

explained for case 1) for period i and the immediately previous period k of the 

sequence for which 0 ik xxC . Since we are assuming that the costs are 

non-speculative according to Definition 1, the cost of the new solution z is at most 

equal to the cost of the original solution x . Thereby, we have constructed another 

feasible solution with at most the same cost as the original one but composed only 

by ACC sequences. ■ 

The values of an ascending capacity constrained sequence 

In this section we describe a procedure for determining the values of an ACC 

sequence in linear time. First, by Florian and Klein (1971), we note that for any 

capacity constrained sequence ),...,( 1 jiij xxS  , there are K periods at capacity, 

at most one positive period below capacity and the remaining periods equal to zero, 
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with  CKDxx ijji ....1 , with ,...}2,1{K  and 0 .  Then, in order to 

compute the values of an ACC sequence between any pair of periods i and j, we must 

determine a sequence ),...,( 1 jiij xxA   satisfying 1)   C.KDx j)i(j)i( 11 , 

with ,...}2,1{K , 0 ; 2) 0ty  with jti  ; and 3)  jji xxx   11 ... . 

Without loss of generality assume that 01 iD . If 0 , then 1ix , otherwise 

Cxi 1 . The next positive period t at capacity, i.e., Cxt  , will be the earliest 

period t such that 1)1(   iti xD , with jti  . We apply the same reasoning until 

all the K positive periods at capacity have been reached. In the cases that either 

11   ii Dx   or for some period t, titi Dx )1()1(   , then there is not a feasible 

ACC sequence between periods i and j. As we are assuming non-speculative motives 

on the cost according to Definition 1, the ACC sequence obtained is of minimum 

cost. Finally, we note that there is at most only one ACC sequence between any 

pair of periods. Since we must consider in the worst case T periods for determining 

an ACC sequence and the number of ACC sequences is at most (T + 1)T/2 (Florian 

et al., 1980), the optimal solution of the CLSP can be determined in O(T 3) time by 

means of the algorithm of Florian and Klein (1971), replacing the procedure for 

obtaining the production values of the capacity constrained sequences by the procedure 

described above for the ACC sequences.  

Conclusions 

In this paper we show that for the CLSP under the assumptions of stationary capacities 

and concave cost functions with non-speculative motives, i.e. it is profitable to 

produce as late as possible, the algorithm of Florian and Klein (1971) can be improved 

from O(T 4) time to O(T 3) time. This result is achieved taking profit the fact that 

there is an optimal solution that is composed exclusively by a kind of sequences 

for which the only fractional period, if it exists, is the first among all the positive 

periods of the sequence. The type of cost structure that we assumed includes many 

cases of interest. In particular it includes those cases for which the fixed costs of 

production are no decreasing and non-lineal functions, which according to our best 

knowledge, are not covered by the algorithms proposed in previous works in the 

literature.  
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