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Abstract. We introduce a new model structure for punctuality of scheduled patients. Each 
iteration of the model is a mixture of two exponential distributions, one for the punctuality 

of early-arriving patients and the other for late-arriving patients. Since patients’ earliness 
and lateness are treated separately, the models can capture different characteristics of each 
while many other model structures such as normal distributions treat them symmetrically. 
The new model structure is tested on data collected in a hospital infusion room and demonstrates 
quantifiably better performance than normal distribution fitting. The approaches are compared 
using two goodness-of-fit measures. Further, patient punctuality is shown to vary throughout a 
day depending on patients’ appointment times. 

Keywords: scheduling; punctuality; exponential distribution 

 

Introduction 

The national goal to contain health care costs has generated multiple strategies to 

increase access, improve patient throughput, enhance patient satisfaction and provide 

high-caliber quality care. An example of the changes wrought is the dramatic expansion 

of ambulatory infusion treatment for a wide range of therapies including analgesics, 

narcotics, chemotherapy, and antibiotic or antiviral infusions. Each treatment is 
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driven by a protocol designating the frequency, duration and staffing requirements 

for treatment. With over 750,000 individuals treated in ambulatory infusion centers 

2005 and expected rate of increase in excess of 10%, understanding the behaviors 

of patients accessing their infusion treatment appointment is critical to matching 

demand to resources. Such strategies are contingent upon accurately anticipating 

patient appointment needs and dynamically matching those needs to health system 

resources as efficiently as possible. Doing so requires an understanding of variability 

in factors such as patient no-show, cancellation, punctuality, and treatment durations 
(Gupta and Denton, 2008). In this paper, we investigate punctuality behaviors of 

scheduled patients in a hospital infusion center with an appointment system in place. 

Patient punctuality is often presumed to follow a normal distribution, e.g. 

Cayirli et al (2006), and, thus, its two-dimensional parameter, i.e. mean and variance, 

is computed to fit a probability density function (PDF) of a normal distribution to 

collected data. Other models have been proposed for punctuality, e.g. four-parameter 

Johnson distributions in Alexopoulos et al (2008), which also can capture asymmetric 

densities. By comparison, arrival and service data are often fitted with exponential 

distribution functions dependent on a single parameter. Naturally, if we fit a PDF 

with a higher-dimensional parameter to the same data, a better fit is expected. 

However, as a trade-off, the estimated parameters have a larger variance and the 

resulting estimated PDF captures potentially-embedded disturbance in data, which 
may not reappear in the future. Thus, to provide this balance, we employ the 

Akaike Information Criterion (AIC) and compare the estimate with a normal distribution 

to a new estimate with a three-dimensional distribution based on a two-sided mixture 

of exponential distributions. This new estimate is designed to treat early-arriving 

patients and late-arriving patients separately and shows the different behaviors of 

each category. The idea of modeling patient punctuality with a mixture of more 

than one distribution is introduced in Tai and Williams (2009) but this is focused 

on finding a model with a better fit to collected data rather than understanding and 

interpreting collected data using appropriate models, which is the focus of this paper. 

Patients arrive early for different reasons than they arrive late. Some patients 

have earlier treatments in different departments in the same hospital so that they 
check in right after their earlier treatments regardless of their appointments. Other 

patients visit early for a potential early-admission and wait for any available time 

slot produced by no-show patients. On the other hand, aspects of late arriving patients 

depend on other factors such as unexpected traffic congestion and delayed same-

day appointments.  

In addition, these early and late patterns vary throughout a day. Patients with 

early appointments are unlikely to have earlier treatments in the same hospital and 

their earliness may have a similar pattern to their lateness. Patients with later 

appointments may demonstrate a tendency for early arrival.  

In Section 2, we describe how the data of patient punctuality, to which our 

models are fitted, were collected. In Section 3, we introduce a new three-dimensional 
distribution for modeling the patients’ punctuality and study evaluation measures 

for comparing distributions. In Section 4, a quantitative comparison is made between 

the new distribution and a normal distribution based on the empirical goodness-of-fit 

measures. Conclusions and future work follow in Section 5. 
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Data collection 

The Infusion Center at the University of California, San Diego, Moores Cancer 

Center provides patients with chemotherapy infusion treatments. 3162 patients 

were treated in the center in November of 2012 alone and the demand for the 

treatments is increasing by 16% annually. The center is operated 7 days a week 

from 07:30 to 18:30. The center manages appointment time slots every 30 minutes 

between 07:30 and 18:30, i.e. at 07:30, 08:00, …, and 18:30, and each patient 
makes an appointment at one of the time slots before visiting the center so that 

there are no walk-in patients. 

Patients' appointment times and arrival times were observed between January 

1st and June 30th in 2012. Since our focus is their punctuality, we ignore the records 

of patients who did not turn up and the total number of observations of patient visits 

is 16410. There were multiple visits by the same patients but, for simplicity, we 

treat, in this paper, each visit as an independent visit by a different patient. 

We analyze the data of the patient punctuality for each appointment time slot 

separately in order to investigate the dependency of the patient punctuality on the time 

slots. Given a time slot, denote by N the number of patients who had appointments 

at the time slot and turned up. The punctuality of the patients is represented by 

 

                                                                        
            

 

Since the center opens at 07:00, the earliest possible arrival time of patients is 

07:00. With these data, an empirical cumulative distribution function (CDF) for 

the patients' punctuality corresponding to each time slot can be obtained as 
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where indicator function       is 1 if      and 0 otherwise. In Section 4, these 

CDFs are compared to models developed in Section 3. 

Models for the patient punctuality 

A model structure 

For modeling the patient punctuality, we consider a model structure,   , whose 

probability density function (PDF) is parametrized as 

(2) 

        
    

                              

        
        

  



S Cheong et al    49 

For      where                    
                   . Unlike other 

model structures such as  normal distributions, this model structure represents early-

arriving patient punctuality and late-arriving patient punctuality with a mixture of 

two different exponential distributions:    is the exponential parameter of early 

arrival,    is the exponential parameter of late arrival, and         is the 

mixture parameter capturing the proportion of each distribution. Thus, 

 

         
 

  

     
 

  
     

  

 

                            
 

 

         
 

   
      

 

 

      

 

The three-parameter cumulative distribution function (CDF) of        is 
 

        
                                        

                
   

Akaike information criterion (AIC) 

Given the punctuality data        , we seek to fit the best model in the model set 

of interest in the previous section. For an evaluation measure, we seek to minimize 

the AIC 
(3) 

       
 

 
                 

 

   

  

 

 (Ljung, 1999) where   is a set of PDFs whose elements are described by 

           with an appropriate parameter set  . Thus,   represents a model 

structure, i.e. a structure of a PDF,   is a set of all possible parameters in  , and 

     is the dimension of  . The AIC is based on the Kullback-Leibler information 
(See, for example, deLeeuw, 1992) and can act both as an estimation criterion and 

as a model selection criterion. 

We seek a PDF that minimizes the AIC in (3). This criterion for density estimation 

is the same as maximum likelihood estimation (MLE) for a model structure comprised 

of the same dimensional parameters. The density estimate associated with (3) and 

the model structure    in Section 3.1 leads to 

(4) 
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where    and    are the numbers of non-positive and positive   's, respectively, 

and, hence, satisfy        . The proof is presented in the Appendix. Clearly, 

the estimated parameters   ,     , and      signify the proportion of the early-arriving 

patients among all arriving patients, the reciprocal of the average earliness, and the 
reciprocal of the average lateness, respectively. 

Model evaluation 

The density estimation in the previous section can be performed over different 

model structures, which leads to different estimates of the patient punctuality density 

function. This brings a need for goodness-of-fit measure across model structures. 

There are many evaluation measures of model structures and, in this paper, we 
consider two, the AIC and the Kolmogorov-Smirnov (K-S) statistic, and apply 

these measures to the fitted two-sided exponential distributions in Section 3.1 and 

the fitted normal distributions. 

Note, the AIC in (3) can be used as a tool to find an optimal parameter in a given 

model structure  , as in the previous section, and, also, can be used to compare 

different model structures by comparing the AIC values of the best models from 

each model structure. 

The K-S statistic is given by 

 

      
 

                   

 

where       is the empirical CDF in (1) and         is the CDF of a model 

corresponding to a parameter estimate   . It follows that 
 

      
         

        
 

 
       

 

   

               
 

 
       

 

   

                

 

which can be computed efficiently. 

Results of density estimation and model comparison 

In this section, we apply the density estimation presented in the previous section to 

the punctuality data collected in the infusion center. Figure 1 shows empirical 

CDFs and estimated CDFs corresponding to normal distributions and two-sided 

exponential functions at four time slots. 
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(a) At 07:30 

 

 

 
(b) At 10:30 
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(c) At 14:00 

 

 
(d) At 18:30 

Fig. 1. CDF estimates for the patient punctuality at four appointment time slots. 
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For time slots where the data richly contain both patient earliness and lateness 

such as (a), (b), and (c) in Figure 1, the two-sided exponential distributions are lucidly 

better fits than the normal distributions and this can also be confirmed by comparing 

their corresponding PDFs. For the 11:30 time slot, PDF estimates are shown in 

Figure 2 with the data described by a histogram. 

At 18:30, almost all data correspond to patients arriving early to which the 

normal distribution assigns 2 parameters and the two-sided exponential distribution 

assigns a single parameter. Thus, it is natural that the normal distribution fits the 
data at 18:30 better. 

 

 

Fig. 2. PDF estimates for the patients’ punctuality at 11:30 

For quantified comparisons, the model structures for each time slot are compared 
using the AIC values and the K-S statistics in Figure 3. This also confirms that the 

two-sided exponential distribution provides better fits except at 17:00, 18:00, and 

18:30. Also, the AIC values for both distributions become larger for later appointment 

time slots, which may imply that the patient punctuality deviates from both model 

structures and a better-suited model structure is needed to describe this punctuality better.  
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(a) AIC values 

 

 
(b) K-S statistics 

Fig. 3. Evaluation values of models at each time slot 
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From the density estimation with a structure of two-sided exponential distributions, 

the estimated parameter    increases, which means that the percentage of early-

arriving patients increases and, at 18:30, almost every patient arrives earlier than 

their appointment time. The corresponding changes over time slot of     and    , 

respectively, indicate that patients arrive relatively earlier for later appointments. 
Density estimation with a normal distribution indicates several properties. The 

mean value is positive at 07:30, which implies tendency of lateness, and becomes 

smaller for later appointment time slots. The tendency of earliness is clear for the 

afternoon appointments from the negative mean values. The variance steadily 

becomes larger for a later appointment times. 

Conclusion 

This paper investigates patient punctuality by looking into patient earliness and 

lateness separately. The patterns of arriving early and late are modeled by a mixture of 

two one-sided exponential distributions and these models are shown to provide 

better fits to the collected data than normal distributions except where the effect of 

one of the parameters in the two-sided exponential distributions is diminished. 

Two evaluation measures are used for quantified comparison. Further, the patterns 

of the patient punctuality are shown to vary throughout a day. More accurate models 

of patient punctuality should engender more effective scheduling strategies.  
For future work, other distribution models will be compared to the model in this 

paper and the patient punctuality will be investigated on a long-term basis rather 

than looking at the variations only in one day so that we can identify variations 

over a week, e.g. different patterns in weekdays and weekends potentially affected 

by traffic. Also, a no-show pattern can be included in the models by adding 1 

more parameter. 
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Appendix 

A simple proof of (4) is given below. From (2) and (3), it follows that 

             
    

              
    

 

 
                 

 

   

    

       
    

   
                                          

                                   
 

 

   

  

       
    

                                

 

   
    

       

      

 

   
    

  

 

where:                    
                   , which represents the 

model structure   , and    and    are the numbers of non-positive and positive 

  's, respectively. The third equality comes from the fact that     , which is a 

constant 3, and     have no effect on the minimization. This makes the estimate 

       the same as the MLE. Then, it is straightforward to show that the estimate 

       is given by (4). 


