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Abstract. The deployment of Fiber To The Home technologies is currently one of the most 
challenging issues for telecommunication operators. This paper focuses on the optimization of 
Passive Optical Network in tree graphs for which a dynamic programming solving approach is 

proposed. Tests performed on real-size instances prove the efficiency of this approach in 
comparison to integer linear programming based approaches. 
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Introduction 

During the last decade, the telecommunication ecosystem has drastically changed 

with the emergence of bandwidth-consuming service providers (let us name 

Google or YouTube), forcing network owners to adapt themselves to the subsequent 

increase in bandwidth needs from their subscribers. For long, the bottleneck of 

networks in terms of capacity has been located in the core of the network but it 

recently switched to the access network (the first miles from the customer premises). 

Concerning fixed access networks, legacy copper networks do no longer fit this 

need for bandwidth upgrade. A transformation of the physical transport layer has 

become ineluctable, with the introduction of the fiber technology as close as possible 

from the customers. 
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France-Telecom Orange favors the Fiber To The Home (FTTH) technology 

embedding the Passive Optical Network (PON) architecture. PON is a specific 

point to multipoint fiber architecture, where a level-1 fiber originating from the 

entry point of the core network (called the Optical Line Termination, OLT) is 

divided into several level-2 fibers when going through a passive network element 

called optical splitter (of level 1). This number of outgoing fibers is limited by the 

capacity of the splitter. Then, fibers of given level are successively divided into 

several ones of the upper level when going through passive optical splitters of this 
level. The number of splitters a fiber has to go through before reaching a demand 

node defines the number of levels of the PON architecture (see Figure 1). This paper 

focuses on the minimization of PON deployment costs in a tree structure, modeled 

as a joint location and routing optimization problem. 

 

 

Fig. 1. An example of a PON architecture with 3 levels of optical splitters (and 4 levels of fibers). 

Optimal PON design is for sure a key problem for telecommunication operators, 

considering both the equipments and labor costs involved. A key feature is undeniably 

the re-use of the existing civil engineering infrastructure. The motivation for tackling 

this specific version of the problem is both practical and theoretical. Previous related 

work by Chardy et al. (2012) show that the real-life civil engineering infrastructures 

are close to tree graphs. Moreover Chardy et al. (2012), Hervet et al. (2012), 

Gollowitzer and Ljubic (2011) and Gollowitzer et al. (2011) suggest that PON design 

problems are hard to solve to optimality in a general framework by the mean of integer 

linear programming approaches: the exact solving of the PON design problem in a 
tree structure should therefore be of interest for decomposition methods. 

The aim of the paper is to present dynamic programming approaches (introduced 

by Bellman (1954)) dedicated to the Passive Optical Network design problem in a 
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tree structure as defined in Kim et al. (2011), for which authors propose both 

mixed integer formulations and branch and bound based exact and heuristic solving 

approaches. The remainder of the paper is organized as follows. The next section 

is dedicated to the definition and modeling of the problem and the formulation of 

several optimal solutions' properties, from which we derive a dedicated labeling 

algorithm presented in the following section. Numerical results are reported in the 

next section to assess the efficiency of the approach, before concluding. 

Mathematical modeling 

This section provides a reformulation of the integer linear program proposed by 

Kim et al. (2011): this formulation is a straightforward adaptation of models proposed 

by Chardy et al. (2012) to tree-shaped civil engineering structures. 
Let us introduce the model for the PON design problem for a K-level of splitters 

architecture (i.e. K+1 levels of fibers). Let T(V,A)  be an arborescence with a set 

of vertices V (the root is denoted by olt) and a set of arcs A. A fiber demand 

     is associated to each leaf node    . Let us respectively denote by   and  

          the capacity and cost of a level-k splitter. Fibers are routed in cables 

contained in a set L. Each type of cable     has a capacity      and a routing 

cost    
  through each arc        . 

With respect to decision variables, the number of level-k splitters installed at a 

node i is denoted by   
   . Likewise,    

    denotes the number of level-k fibers 

routed along the arc (i,j). In our context, the cabling policy specifies that at most 

one cable can be chosen per arc: the cable selected for the arc         is thus 

described though the set of binary variables    
       . 

The     design problem is to find a deployment of fibers from the OLT to the 

demand nodes (going through the required number of levels of splitters i.e. K) of 

minimal cost, defined as a combination of splitters and cables installation costs. 

The set of feasible solutions, denoted by        , can be formulated as follows: 
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where       and       respectively denote the father-node and the set of 

son-nodes of node i in the arborescence. 

The optimal value for the K-levels PON design problem in an arborescence, 

denoted by      , can be formulated as follows: 

 

 
 
Constraints (1)-(3) are fiber flow constraints, taking into account the fact that 

not all fibers going out of a splitter are necessarily used. The set of constraints (4) 

ensures that fibers going through an arc must be contained in a subset of cables 

while constraints (5) induce that at most one cable is used per arc. Let us note that 

the assumption is made that the cable of greatest capacity is large enough and that 

the arc capacities are neglected (supposed large enough too). 

The rest of this section is dedicated to the presentation of some optimal solution 

properties that are of interest for the design of the labeling algorithm presented in 

the next section. 

Proposition 1. Let us denote by T(j) the sub-tree of T(V,A) rooted at node      . 
A lower bound of level-k splitters installed in any sub-tree is given by the following 

recursion: 

 
Proof. Due to the size of the article, the proof is not given. Nevertheless, this 
property is a straight-forward generalization of results from Kim et al. (2011) and 

the reader can refer to it for the proof dedicated to cases      . 

Corollary 1. In any optimal solution, a lower bound for the number of level-k 

splitters installed at any node       is given by: 
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Proposition 2. An upper bound for the number level-k splitters installed in any 

sub-tree is given by the following recursion: 

 
Proof. Due to the size of the article, we only present a sketch of the proof. The key 

idea is that the strategy consisting in installing  
  

  
  level-K splitters at each demand 

node i defines a feasible solution to serve the clients' fiber demand if they are 

properly served by level-(K-1) splitters. Then we notice that this strategy is the 

most consuming in terms of level-K splitters in any sub-tree (no sharing of splitter 

capacity between demand nodes). The same reasoning applies to any level of splitter 

        considering the installed level-(k+1) splitters as the demand. 

Corollary 2. In any optimal solution, an upper bound for the number of splitters 

installed at any node       is given by: 

 

A dedicated labeling algorithm 

For the dynamic programming framework, we define a recursive function in order 

to model the problem, close to those of location-allocation problems (the reader 

can refer to Bauguion et al. (2011) for the design of such algorithm in a cache 

location context). 

 

Definition 1. For a given sub-tree T(i) rooted at node i and a feasible configuration 

s=( z, f, c) in this sub-tree, which total number is limited thanks to corollaries 1 

and 2, we define the remaining demand of level-k fibers (respectively the subscriber 

and splitter demand for k=K+1 and k=1...K) associated to the configuration s as 

   
       by the recursive function: 

 

 
with, for any leaf node i’ of the sub-tree : 
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Definition 2. For a given sub-tree T(i) rooted at       and a feasible configuration 

s=( z, f, c) in this sub-tree, we define the cost of that configuration with          

through the recursive function : 

 
with, for any leaf node i’ of the sub-tree: 

 
 

Definition 3. For a given sub-tree graph T(i), let s=( z, f, c) and s’=( z’, f’, c’) be 

two feasible configurations for the problem, i.e. they both belong to           . 

We define the domination (denoted by  ) between those two configurations as 

follows : 

 
 

Definition 4. A solution s=( z, f, c), for a given sub-tree T(i), is defined as relevant 

for this sub-tree if it is not dominated by any other solution of           . The 

set of relevant solutions for the sub-tree T(i) is denoted by      . 

Finally we introduce the recursive relation between sets of relevant solutions: 

 

 

Numerical results 

The objective of this section is to assess the efficiency of the method to solve real-life 

instances. As mentioned in the introduction, civil engineering infrastructures for 

deploying FTTH are close to tree graphs of size up to several thousands of nodes 

and links. Therefore, preliminary tests have been performed on random instances 
of tree graphs of 500 to 4000 nodes, with a mean number of sons per node equal to 

3. Only 1 and 2 levels of splitters architectures (referred as “single'” and “double”) 

are considered with splitters of capacity equal to 8 (i.e.         ). 3 solution 
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methods are compared: first the labeling algorithm described in the previous section 

(column “Dyn Prog”), then the CPLEX 12.2 default branch and bound algorithm 

on Kim et al. and      respective mixed integer formulations (respective columns 

“Kim et al. formulation” and “PON formulation”). Note that a 1000 seconds time 

limit is set for any branch and bound solving. 

For each ''Instance'' (characterized by the number of levels of the architecture and 

the size of the tree graph in terms of number of nodes), we report for the value of 
the optimal solution (“FTTH*” column) and the computation time (“CPU time” 

column) for each method. In addition, we provide the CPLEX gap when the 

branch and bound does not converge within the time limit (the absence of gap 

means that no feasible integer solution is found). 

Table 1. Tests results. 

 
 

The results clearly indicate the tractability of the dynamic programming approach, 
which solves real-size instances. Note that only the largest instance of each category 

of architecture exceeds the time limit. In comparison, branch and bound-based 

approaches seem to be limited to tree graphs of few dozen nodes. Note that the 

comparison of the mixed integer formulations suggest that the reformulation of 

Kim at al. (2011) model that we propose is efficient, notably as it seemingly 

breaks some symmetry: nevertheless this has to be confirmed by further testing on 

smaller instances. 
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Conclusion 

This paper deals with a Passive Optical Network design problem in tree infrastructures. 

A new integer linear formulation is proposed for this problem, embedding a general 

K-level PON architecture. An exact labeling algorithm is proposed taking benefit 

from the structure of some optimal solutions.  

The tests results clearly assess the efficiency of a dynamic programming approach. 

Nevertheless these are preliminary results that need to be enriched: first, a sensibility 
analysis with respect to splitter capacity and mean number of son-nodes would be 

interesting to conduct; second the comparison of the mixed integer formulation is 

to be deeper investigated both theoretically and with tests performed on small instances. 

Another research avenue for the future should be the refinement of the cabling 

policy and the integration of specific rules for field deployments. 
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