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Abstract. In this paper, a mathematical programming based model is described to assist with the 
schedule of services for a set of auxiliary bus lines that operate alleviating a disruption of the 
regular transportation system during a given time period. In contrast to other models, considered 
static, service schedules are set taking into account demand fluctuations that may happen in that 
time period. Passenger flows are represented with a multi-commodity structure and disseminate 
through paths on a diachronic capacitated network which lead them to their destination in the 
shortest time taking into account the available capacities of the bus units. The model permits to 

accommodate the schedules of the auxiliary bus lines in order to enhance transfers and to minimize 
total travel time. The model assumes that operational times at bus stops are constant and that 
buses do not queue at stops. The solution method can be considered an heuristic that combines 
searches along subgradient's projected directions with a pattern search based method for constrained 
optimization. 
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Introduction 

Disruptions in mass transportation systems are the cause of delays, annoyances and 

discomforts in the mobility of cities and metropolitan areas. One means of reducing the 

effects of disruptions is to bridge the stations at disrupted sections of the regular service 

(either rapid transit or metro) with auxiliary transportation services that must operate 

under high-demand conditions. Another problem that these auxiliary services must face 

are the peak flows originated at disrupted stations on the arrival of trains or by 

unexpected fluctuations that may be only predicted with little anticipation. These 

fluctuations superimpose to the expected daily variability of the demand making that a 

planning of a time table of auxiliary services based on expected values for the demands 
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can be unappropriate resulting in delays that can be still minimized. Thus, the 

synchronization of services and the adaptation of transfer times between auxiliary lines 

and regular services is of utmost relevance. 
Establishing auxiliary bus services has been a common practice, but only recently, in 

Kepaptsoglou and Karlaftis (2008), has this problem been focussed directly. Also, in 

Codina et al. (2013) a model for planning auxiliary bus lines is developed which 

considers explicitly the degree of congestion of the auxiliary system and its possible 
bottlenecks. The models in these works can be considered static since just average 

demand values are taken into account and frequencies, or total number of services 

during the period, are determined instead of service schedules oriented to the possible 

synchronization of arrivals and transfers. However, although dynamic transit 

assignment scheduled oriented models have been developed, such as in Papola et al. 

(2009) or in Haupt et al. (2009), they are difficult to integrate into a frequency/schedule 

setting framework. Also, models for time table setting in railway systems that minimize 

a weighted combination of time transfers have been extensively studied, for instance in 

Schöbel (2006), as well as algorithms for solving them (see, for instance Liebchen et al. 

(2008)). Scheduled based transit assignment has also extensively studied taking into 

account stochastic models for route choice in Tong and Wong (1999) and FIFO flow 
observance Nguyen  et al. (2001). 

In this paper a simplified scheduled based transit assignment model is developed 

which can be used efficiently for the rescheduling of services in a dynamic context for a 

public transportation network of moderate size, such as the auxiliary systems used for 

alleviating disruptions. It is based on a capacitated multicommodity flow problem on a 

diachronic network covering a fixed time period for which a dynamic origin destination 

matrix is assumed to be available, capturing instantaneous bulk flow arrivals at stations 

of the disrupted transportation system. Time schedules are determined using an heuristic 

algorithm that uses search directions that are projected subgradients of an objective 

function minimizing the total passengers travel time of the system. When search along 

these directions fail then, an adaptation of the pattern search based method by Lewis 

and Torczon (2000) is used to determine a valid movement or to stop the algorithm. 

Model's description 

A prior step to the application of the model described in this paper would be to set up 
the structure of the auxiliary transport system, i.e., its stops and line layouts as well as 

an approximate number of services that need to operate on that lines. For this purpose, 

the layout of the disrupted system must be taken into account and its relationship with 

the urban network topology. Thus, it must be studied whether the stations of the 

disrupted system can be served by a single stop or by separate stops accordingly to the 

possibilities that offer the configuration of the urban network on which the auxiliary 

system must operate. Next, it must be determined which lines can be allocated on the 

auxiliary system accordingly to the street and bus stop capacities by means of a network 

design model using mean values for demands and operational times, such as, for 
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instance the one developed by Kepaptsoglou and Karlaftis (2008) or, if the auxiliary 

system must operate under high congestion levels, then the one by Codina et al. (2013).  
The model assumes that the layout of the auxiliary bus lines system is fixed and 

known, i.e., for each line the sequence of stops to be performed is known as well as the 

total number of services on that line. Then, what the model seeks to determine is the 

time schedule of each of these services, or equivalently, the time lags between 

consecutive services with the purpose of minimizing trip travel times of users of the 
auxiliary transport system and enhance the possible internal transfers of the auxiliary 

system as well as between the auxiliary system and the portion of the regular system 

still operative. In order to obtain a better computational performance two basic 

assumptions have been made: a) there is no queueing at bus stops of the auxiliary 

transport system and b) boarding/alighting times are fixed to reasonable values 

independently of boarding/alighting flows. 

Structure of the diachronic network  

The core of the model is a diachronic network where links are associated to possible 

passenger movements and movements of units in a service. Throughout the text, double 

indexed elements such as links in a graph will be denoted either by a single letter   or 

by the labels of the tail and head nodes,       at convenience. The same will apply for 

origin destination (o-d) pairs, that will be usually designated by   or explicitly by 

     . For a better description of the diachronic network, let         be a planar 

directed graph representing the spatial distribution of the auxiliary transportation 
system. As a convenient notation, all elements associated to the planar graph will be 

written in bold. In order to define the trip demands, it will be assumed that a subset of 

the nodes     are centroids on which a set of o-d pairs                       
    is defined. The subset of centroids that are origins and destinations will be denoted 

by O and D respectively. Let     the set of stops of the auxiliary transport system. In 

general,      . Let also    denote the set of transport lines operating on  ; then 

       , where   and    will stand for the set of auxiliary lines and the set of regular 

lines included in the scenario, respectively. The sequence of stops in line      will be 

denoted by     , the segments making up line   by      and the set of lines halting at a 

stop     will be denoted by      . Let    the number of services initially expected for 

line     and let      be the time lag between service     and   at the initial stop of 

line    . Time lags for lines      are assumed constant and left at their initial 

settings. The vector of time lags for line     will be denoted by   , whereas   will 

denote the vector for time lags of all lines of the auxiliary transport system. 
Let   be the time horizon covered by the model (typically 2 to 3 hours). The 

diachronic network will be associated to a time granularity given by a small time 

subinterval  , typically of     minute. The graph for the diachronic network will be 

denoted by        . Nodes     are assigned a time label    which may be constant 

or which may be determined by the decision variables  . The set of links   is divided 

into                       . Links in each of these subsets are 

assigned specific travel cost functions and play different roles as shown in figure 1 
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below. The role of links in subset    will be explained further in subsection 2.3. The 

forward and backward stars of links emerging/incoming from/at node     will be 

denoted as      and      respectively. 

 

 

Fig.  1.  Graphical description of the topology of the diachronic network        . 

 Passenger flows on links      are dwelling at a stop during boarding/alighting 

operations; flows on links      are moving through a line segment from station to 

station; flows on links      are boarding from a stop whereas flows on links      

are descending to a stop. Transfers and other external movements are captured by links 

    . Passenger flows waiting at stops are captured by links     . By 

                        it will be denoted the corresponding subsets of links 

associated to node    . Likewise,                         will denote subsets 

associated to line     ,             the subsets associated to service   for line      

and             will denote links associated to node   and line  . A node     which is 

head or tail of a link in          or   , has associated a stop in the planar graph that 

will be denoted by     . 
For each node     in the planar graph, the diachronic graph   contains a linear 

sequence of links        , each of them with a travel cost  . Their head and tail 

nodes    and   , respectively, are assigned a time label that is a multiple of  . For a 

node    , in the planar graph, the set of nodes that are head and tail for links in       
will be denoted by                            . These nodes appear in bold in 

figure 1; passenger flows on these links correspond to waiting at node    . Each 

service in a line     , i.e., the journey of a bus or transport unit along the line, is 

represented by a sequence of links               , so that                    

  ... and         . Head and tail nodes for the links in this sequence appear in grey 

in figure 1 and their time label is a function of the decision variables   if the line    , 

or is constant if     . If     , its head node,     , will be associated to a stop 

    and its tail node,     , to another stop     . Node    is assumed connected to 
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any node in       by means of links      . Also, node    is assumed connected to 

any node in       by means of links       . 

Link cost functions 

Link cost functions for the links in the diachronic graph   will depend on link travel 

times at line segments of the planar graph   and operational times at stops. Let   
  the 

time to reach station     from the beginning of line   calculated on the planar graph   

taking into account operational times at previous stops of the line and travel times on 

line segments. Then, for any link            ,          , an initial arrival time label 

    
       

  will be associated to node   and an initial exit time label     
       

  

        will be associated to node  . 
Link cost functions for links     are the following ones: 

- if      then         is the operational time of transport units in line   at stop   
 . It may be assumed fixed to a constant value or it may be a function of the boarding 

and alighting flows. 
- if      then    is the in-vehicle time or travel time for the line segments. 
- if      then            is the time subinterval marked by the time granularity 

of the model. 
- if      or      then the cost functions   ,        , for these links are assumed 

to be flow independent and are parametrized by the difference of their time labels 

          of their head and tail nodes, and are given by: 

                  
   

  
           

           

  
    

 

 
  (1) 

where   is a predefined small number and z0 can be adopted as a small fraction of the 

operational time      at stops (i.e, < 5%). By adding     the following convenient 

condition is achieved: 

                                                               (2) 
The time instant labels for nodes     in previous expression (1) will be evaluated by 

means of the initial arrival and exit times by means of: 

         (3) 

                   

                 
       

    

 

   

    

        

   

                 
       

    

 

   

    

        

  

 

being                           and                          . Assume 

that for a link              , the time labels    and    are fixed with       
       ; then, only the links             that need to be considered are those verifying 
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                 and the links             that need to be considered are those 

verifying                 , because all other links result in a cost     . . Let 

               and                denote the set of links verifying these conditions. It is 

not difficult to show that if                then,                and                 . 

 

Fig.  2.  The cost function (1) for links in    and   . 

The link travel times as functions of the time lags      will be expressed then as 

       , where the function                              is defined by: 
         (4) 

         

 
 
 

 
        

    

 

   

                    

        
    

 

   

                    

            

 
For the solution method it will be necessary to evaluate the derivatives of the travel 

time functions vector      
 
        with respect to the time lag vector  . 
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Demand and network flows structure on the diachronic graph 

For any o-d pair           on the planar graph, a minimum o-d travel time    

can be calculated. These minimum travel times are calculated without taking into 

account transfer times from different lines at stations. Correspondingly let   
  be the 

minimum number of time ticks to reach destination   from origin  , i.e.,   
     

     . 
Then, the model assumes that the total number of trips originating at   at time 

subinterval   with destination  ,   
 , are known. Because the capacity limitation at links 

in    will be active reflecting congestion effects, the flow   
  will divide into flows 

   
 , arriving at destination   at several time instants       

 , 

         (6) 

  
    

      
 

   
         

    

 

Thus, newly defined sets of nodes and links will be added to the diachronic network 

so that flows    
  are taken into account properly. For each destination     of the 

planar graph a new artificial node      will be considered where the balance equations 

(6) will hold. These artificial nodes are the head nodes of links originating at      . Let 

          be the set of such links and let             . Figure 3 illustrates the 

previous concepts in the demand structure. Costs for links in    are zero. Flows on the 

diachronic network will be structured in commodities                         
which can be grouped by origins, i.e., if        , the commodities will be then 

                       , or equivalently flows   
 
           

   
 that originate at 

node         for time subinterval  -th and arrive to artificial nodes            . 

 



E Codina and L Montero     113 

 

Fig.  3. Schematic representation of the origin-destination flows structure in the diachronic graph. 

The network flows problem 

Let now                      be a vector defined as: 

         (7) 

         
  
 

                                           

   
 

                   

          

  

Let now      be an arc flow vector defined on the diachronic network for links in 

    , let         
    the vector of total flows on links in     , let           

denote a component of   and let             
   
             be a vector for o-d 

demands associated to links in   . 
If the time lags                 are fixed, then the network flow problem 

determining passenger flows on the time expanded network will be: 
         (8) 

                 

        
       

                                

                  

                      
                   

                      
                   

             

 

where      is the links travel time function vector as a function of the time lags vector 

 , that applies for links in     .   , is the capacity or maximum number of passengers 

in a bus operating in a line      corresponding to a in-vehicle link        . 
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Lagrange multipliers   
    

  corresponding to constraints               , appear 

separated by a bar, " ", from them.   ,    are node-arc incidence matrices for the 

diachronic network. 
The functions    for boarding and alighting links         are defined 

accordingly to the ratio           which will be assumed an integer          . 

         (9) 
 

      
 

         
           

 

       
      

 

       
     

               

   
 

 

and a similar expression would apply for links     . Notice that            
                   and that      

             , for       . 

 

 

Fig.  4.  The function   in (9) for    . 

Function     , the value function of previous problem (8), is non-differentiable and 
non-convex. In order to minimize it using an optimization algorithm, its subgradients 

should be evaluated. By using results in Gauvin and Dubeau (1982), at a differentiable 

point, the partial derivatives of   can be evaluated by:   (10) 
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where    is a vector of total link flows solving problem (8), then at points where   is 

differentiable,       can be expressed more explicitly as:    

         (11) 

 

  

     
   

    

 
 
 

 
 

  
       

          

   
 
    
     

    
   

 
     

       

          

   
 
    
     

    
   

 
 

 
 
 

 
 

 

         

where     
  

  
       . 

A method for evaluating optimal time lags between services 

A convenient way of finding the optimal time lags is by solving the following problem: 

         (12) 
        

       

    

   

          

            

 

 

where                      and the additional time lag       can be considered 

simply as a slack variable. The solution method can be considered a combination of a 

(sub)gradient projection method and a pattern search. At each iteration, a direction 

         is calculated after solving problem (8) and applying then formula (11). Let 

       be the set of inactive constraints, i.e.,                            . Then, 

its negative projected direction,    , is given by                if          and 

       if         , where      
 

  
        is the mean value of the components in 

       . A small number of evaluations of   are along direction    are performed with 

step lengths   bounded by        , provided that               . The 

projected direction is considered to fail if                and        . Bounds 

      are established so that constraints on the time lags     are not violated and their 

fluctuations are at least  , the time granularity of the model. If the projected direction 

fails, then the opposite direction     is searched using the same procedure with suitable 

bounds     and    . In case that a new failure in getting lower values for   happens, 
then an adaptation to the problem of the pattern search method in Lewis and Torczon 

(2000) is initiated. The objective function   is evaluated at points on the opposed 

orthant containing   . Thus, it is evaluated at a sequence of points   
  
      , where     

is the projected direction of        which is given by: 
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         (13) 

 

         
 
                               

  
 

                       
  

 

where step length        if   
  
           or      otherwise and the movement 

will be discarded. If a movement     is found so that     
  
               then 

  
    

   
  
       . Otherwise it is considered that no enhancement can be done and 

the algorithm stops. 
Due to the simplifications of the model, after finding an approximate solution to 

problem (9) the following aspects should be inspected: a) it should be checked whether 

the operational times at stops      are consistent with the total boarding and alighting 

flows              so that these operations have a reasonable time to be 

performed. Also, the overlapping of arrivals at stops from transportation units of 

different lines, if it is the case, should be solved satisfactorily. 

Running the algorithm 

The model described in previous sections and the algorithm for solving it have been 

implemented in AMPL and tested on the small test network shown in figure 5 below 

using CPLEX 12.5. The tests have been carried out on a working station R5500 with 

processor Intel(R) Xeon(R) CPU E5645 2.40 GHz and 48 Gbytes of RAM. On this 

network six lines have been defined each of them with 6 services on a time span of 360 

time subintervals of 0.5 minutes each. Each service corresponds to a bus run with 
capacity for 50 passengers. The following origin destination pairs have been defined 

                                       , where input flows at origins has been 

set to 1 passenger each 0.5 minutes (i.e., per time subinterval) for each destination. The 

six lines are the following ones: line L1 starts at node 10, stops at nodes 12, 17, 22 and 

ends at node 24. Line L2 starts at node 24, stops at nodes 22, 17, 12 and ends at node 

10. line L3 starts at node 10 and then stops at 15, 15, 17, 19, and ends at node 24. Line 

L4 starts at node 24, stops at nodes 19, 17, 15 and ends at node 10. Line L5 starts at 

node 14, stops at nodes 19, 17, 15 and ends at node 20. Line L6 starts at node 20, stops 

at nodes 15, 17, 19 and ends at node 14. Dwell time at stops has been fixed at   
    . Each link in the network is 500m long, speed of buses is assumed to be 35 km/h 
and pedestrian's speed is assumed 3 km/h. The resulting diachronic network has 3450 

nodes and 6551 links. 

Because the heuristic nature of the problem mild stopping tolerances have been used, 

that have been reached after a number of iterations ranging from 11 to 15. In none of the 

runs was necessary the pattern search method in order to overcome a failing descent 

projected direction. Solving instance of problem 8 has taken an average of 35 seconds 

approximately. 



E Codina and L Montero     117 

 

Fig.  5.  A small test network. 

Conclusions 

A model for scheduling services on public transportation lines has been developed that 

is capable of handling dynamic variations of the demand with an objective of 

minimizing the total passenger's travel time. The optimization of the schedules is done 

using an adaptation of the projected gradient algorithm in order to minimize the total 

travel time. A diachronic network model is developed on which linear programming 

problems are solved. Despite the large size of the diachronic network, tests on small 

size networks show that the linear programming problems can be solved efficiently 

showing that it can be used either for offline planning using a large period of 2 to 3 

hours or, in an online optimization context using shorter periods of   30 minutes. 
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