

Lecture Notes in Management Science (2014) Vol. 6: 167–175
6th International Conference on Applied Operational Research, Proceedings
© Tadbir Operational Research Group Ltd. All rights reserved. www.tadbir.ca

ISSN 2008-0050 (Print), ISSN 1927-0097 (Online)

Three metaheuristics for the construction

of constant GC-content DNA codes

R. Montemanni 1, D.H. Smith 2 and N. Koul 1

1 IDSIA - Università della Svizzera Italiana/SUPSI,

Via G. Buffi 13, 6904 Lugano, Canton Ticino, Switzerland
roberto@idsia.ch; nikhil.koul@usi.ch

2 Division of Mathematics and Statistics,
University of South Wales, Pontypridd, CF37 1DL, UK
derek.smith@southwales.ac.uk

Abstract. DNA codes are sets of words of fixed length n over the alphabet {A, C, G, T} which
satisfy a number of combinatorial conditions. The combinatorial conditions considered are (i)

minimum Hamming distance d, (ii) fixed GC-content and, in some cases (iii) minimum distance d
between any codeword and the reverse Watson-Crick complement of any codeword. The problem
is to find DNA codes with the maximum number of codewords. In this paper three different meta-
heuristic approaches for the problem are discussed, and the outcome of an extensive experimental
campaign, leading to many new best-known codes, is presented.

Keywords: coding theory; DNA codes; metaheuristics

Introduction

There has been considerable interest recently in the application of metaheuristic algorithms

to the construction of DNA codes. These codes have applications to information storage

and retrieval in synthetic DNA strands (Marathe et al 2001). The DNA codes are sets of

words of fixed length over the alphabet {A, C, G, T}, which represents the four bases

adenine, guanine, cytosine and thymine. The words of a code have to fulfill some properties,

and it is desirable that the number of words in each code be as large as possible. Constructive

lower bounds using algebraic coding theory, stochastic search, a template-map strategy,

genetic algorithms and lexicographic codes have been proposed (Gaborit and King

2005; Chee and Ling 2008; King 2003; Li et al 2002; Smith et al 2011; Tulpan and

Hoos 2003; Tulpan et al 2002). In Montemanni and Smith (2008) four new local search
algorithms were developed and combined into a variable neighbourhood search framework.

168 Lecture Notes in Management Science Vol. 6: ICAOR 2014, Proceedings

The contributions of the present paper are threefold: (i) new codes, which arise from

new runs of the variable neighbourhood search method discussed in Montemanni and

Smith (2008), are made public; (ii) a new simulated annealing algorithm, able to handle

larger instances than the variable neighbourhood search, is presented; (iii) a new evolutionary

algorithm, able to further enlarge the spectrum of tractable instances, is presented. New

best-known codes obtained by the methods are made public.

The Problem Description

A DNA word of length n is a string of length n over the alphabet {A,C,G,T}. It will be

referred to as a codeword. A set of codewords is referred to as a code. The DNA code

design problem considered here is to find the largest possible set of DNA words, each

of length n, satisfying certain combinatorial constraints. The constraints considered here

are as follows.

Hamming Distance constraint (HD): for all pairs of distinct words σ
1 and σ

2 in the

code, H(σ
1
, σ

2
) ≥ d, where H(σ

1
, σ

2
) is the Hamming distance between words σ

1 and σ
2
,

namely the number of positions i at which the ith letter in σ
1 differs from the ith letter in σ

2
;

GC-content constraint (GC): a fixed number w (taken here to be ⌊n/2⌋) of letters of each

word are either G or C. For a word σ
i the number of letters which are G or C is denoted

GC(σ
i
);

Reverse complement Hamming distance constraint (RC): for a word σ
i
= x

1
 x

2
… x

n

the Watson-Crick complement of σ
i is wcc(σ

i
) = x

n

C x
n-1

C… x
1

C, where AC=T, CC=G,

GC=C, TC=A. For all (not necessarily distinct) pairs of DNA words σ
1 and σ

2 in the

code, the RC constraint specifies that H(σ
1
, wcc(σ

2
)) ≥ d.

A4

GC(n,d,w) and A4
GC,RC(n,d,w) denote the maximum number of codewords in a

DNA code satisfying the first two constraints (with the RC constraint not considered)

and satisfying all three constraints, respectively.

A Variable Neighbourhood Search approach

In Montemanni and Smith (2008) a metaheuristic algorithm is presented. It combines

four local search procedures (described later) in a Variable Neighbourhood Search

(VNS) framework. Such algorithms work by applying different local search algorithms

one after the other, aiming at differentiating the characteristics of the search-spaces visited

(i.e. changing the neighbourhood). The local search methods are applied in turn, starting

each time from the best solution retrieved since the beginning, or from an empty solution.

The reader interested in more details is referred to Montemanni and Smith (2008). The

parameter TimeVNS denotes the number of seconds for which the VNS algorithm runs.

R Montemanni et al 169

Seed Building (SB). One class of algorithm examines all possible codewords in a given

order, and accepts codewords incrementally if they are feasible with respect to already

accepted ones (Gaborit and King 2005, King 2003). This idea can be hybridized with

the concept of seed codewords, which are an initial set of codewords with the required

GC-content, to which codewords are added in the given ordering if they satisfy the

necessary criteria. The algorithm evolves the set of codewords over time, modifying it

every ItrSeed iterations (an iteration is the examination of all possible codewords). A
computation time of TimeSB seconds is allowed for each run of the algorithm. Clique

Search (CS). A partial code can be computed by solving a maximum clique problem

(Chee and Ling 2008). In this method a random subset of the codewords of a given code

is removed, leaving a partial code. A parameter CSRem defines the percentage of

codewords removed. All codewords compatible with those left in the code can be identified,

a graph can then be built, and a maximum clique problem solved to complete the partial

code. A maximum computation time of TimeCS seconds is allowed, while a maximum

time of TimeMC is set for each maximum clique problem. Hybrid Search (HS). Hybrid

search merges the concepts used in seed building and clique search, attempting to combine

the best characteristics of the two methods. For this purpose, a concept of weak (Hamming)

distance, regulated by parameter HSRel, is introduced. A computation time of TimeHS
seconds is allowed for each run of the local search. Iterated Greedy Search (IGS). The

method is inspired by that discussed in Tulpan et al (2002), and, in contrast to the local

searches previously reviewed, works on an infeasible set of codewords, trying to make

if feasible. There are three parameters: IGSChg regulating the percentage of codewords

of the input solution scrambled when the local search starts, ItrSrc implementing a restarting

mechanism in case of starvation, and TimeIGS, representing the maximum time allowed

for each run of the method.

A Simulated Annealing approach

Longer codes are desirable for applications. The main drawback of the VNS approach

previously described is that it cannot handle problems with large values of n. This is a

result of the explosion in the computation time required by the local search procedures

working on feasible sets of codewords. For this reason a new Simulated Annealing (SA)

approach is presented. Simulated Annealing is a metaheuristic algorithm derived from

thermodynamic principles, originally applied to combinatorial optimization in Kirkpatrick
et al (1983). The search algorithm proceeds with the cost function reducing most of the

time, but it is allowed to increase sometimes to permit escape from local minima which

are not global minima. In particular, such an algorithm is based on the connection between

the physical concept of temperature in annealing processes and the mathematical concept

of the probability of accepting a cost-increasing solution. The probability will be high

initially and will decrease slowly, like the temperature in the annealing process that

produces the regular crystal. In the remainder of this section an adaptation of these principles

to the problem under investigation will be described. In a similar way to the IGS local

search discussed previously, the implementation of the SA idea for DNA code design

works on infeasible sets of codewords. This means that not all of the codewords are

170 Lecture Notes in Management Science Vol. 6: ICAOR 2014, Proceedings

compatible with each other according to the constraints. The algorithm tries to make

them feasible. The method proceeds by modifying codewords with the target of reducing (a

measure of) the constraint violations. If no violations remain, then a feasible solution

has been retrieved. The measure of infeasibility adopted for a set of codewords W is

given by the following equation:

where the last term in the sum is considered only when RC constraints are active. Inf(W)

gives a measure of by how much constraints are violated in the code W. The target is to

repeatedly modify the code W towards a feasible solution (i.e. Inf(W)=0). The fitness

function used is, however, slightly more complex than that defined in (1). Given a code

W, let vij represent the number of violations between codeword i and the other

codewords (and reverse complements of codewords when the RC constraint is considered)

in which the letters in position j are the same in the two words. The modified measure of

infeasibility adopted for the SA is then (2), where ε is an arbitrary small constant inserted to

make the Inf(W) term dominate the other two.
The aim of the second and third terms of (2) is to spread the number of violations as

evenly as possible over positions (columns of the code) and words (rows of the code).

The rationale behind (2) is that usually codes with balanced violations are easier to turn

into a feasible code. Preliminary tests showed that this strategy speeds up the algorithm
substantially. During each iteration, a codeword w of solution W is selected at random, and

the change of one of its letters that guarantees the maximum decrease in the infeasibility

measure is selected (ties among possible modifications of W are broken randomly).

Non-improving new codes are probabilistically accepted with probability defined by

prob = min{1,e-(ΔMeas(W)/t)}, where ΔMeas(W) is the change in the infeasibility measure

following the optimal change of one letter of a randomly selected codeword, and t is a

temperature parameter initialized to Initt and decreased every Nitert iterations according

to the formula t:=Decrt·t. The procedure stops when Inf (W)=0 or t<Finalt. If the loop

is exited because Inf(W)=0, then a new feasible code W has been found. A random

codeword w is then added to W and the procedure is restarted. If Inf(W)>0 and t<Finalt,

then the temperature t is reinitialized to Initt, and the annealing process is restarted. The
execution of the algorithm stops when a maximum computation time of TimeSA seconds

has elapsed.

An Evolutionary Algorithm approach

It has been observed that an approach which works by incrementally inserting new feasible

random codewords into a partial code, produces promising codes. Here this idea is

exploited further by hybridizing it with the infeasibility measure (1) within an Evolutionary

Algorithm (EA), targeting therefore longer codes (with higher values of n) and larger

R Montemanni et al 171

codes (with more codewords) (Koul 2010). An Evolutionary Algorithm is a method

incorporating ideas from natural selection, based on survival of the fittest. An Evolutionary

Algorithm maintains a population of structures, that evolves according to evolutionary

rules simulating selection, recombination, mutation and survival as seen in Nature. These

operators are often referred to as genetic operators. A fitness or performance indicator is

associated with each individual in the population.

In Nature the fittest individuals are more likely to be selected for reproduction, and
recombination and mutation modify those individuals, yielding potentially superior ones

in the next generation. In Evolutionary Algorithms, the fitness value associated with

each individual will therefore drive these processes and improve the quality of the

population in terms of the average fitness (which corresponds to a set of more optimized

solutions of the optimization problem under investigation). The interested reader is referred

to Bäck (1996) for a more detailed description of this optimization paradigm. The main

idea of the approach proposed is to maintain a set of pools of codewords, which are feasible

according to the GC-content constraint. These pools will be used to enlarge a partial

code W under construction (corresponding to the empty set initially).

The evolutionary phase of the approach resides in the way the pools are evolved once

all the codewords feasible with W have been added to W (this phase corresponds to the
end of an iteration of the algorithm). The evolutionary operator applied to each pool is a

swap mutation on each codeword of the pool. This avoids starvation phenomena of the

algorithm, and guarantees the search to be evenly spread over the space, since each pool

covers a well-defined portion of the whole search space. A recombination (crossover)

operator is not used in this implementation, due to the strategy of statically dividing the

search space over the different individuals of the population (pools of codewords).

In more detail, the algorithm starts by assigning every possible combination of positions

for the bases G or C evenly to the Np pools of the population. More combinations may

be assigned to a pool than the eventual size of the pool, depending on the ratio n/Np.

Pools are then filled with NW random codewords that have base G or C in the positions

defined by one of the combinations assigned to each pool. This property is respected

initially, and during the running of the algorithm: in the initialization phase the pools
give the code a better spread over the possible regions of the search space and during

the running of the algorithm they reduce the risk that only some regions of the search

space are considered. The working code W is initialized to the empty set, and is incremented

by selecting feasible codewords from the pools. In particular, a loop over the pools is

entered and, for each pool, codewords which are feasible with respect to W are added to

W with probability pA. The loop is exited when no more feasible codewords are contained in

the pools. This concludes the proper initialization phase. A double loop, corresponding

to the main section of the algorithm, is then entered. In the inner loop, an evolutionary

operator is applied to the pools.

The evolutionary operator adopted is to choose a random position for every

codeword and to swap the chosen base with the single alternative (i.e. swap C with G or
swap A with T). This ensures that the GC-content constraint is still fulfilled. Then

evolved pools are ranked by increasing values of the infeasibility measure (1) calculated

on the set W ∪ Pooli for each Pooli of the population (i.e. Inf(W ∪ Pooli)). The evolved

pools are examined in the order defined by the ranking, trying to enlarge the code W. The

inner loop is repeated until NIT consecutive iterations are executed without improvements to

172 Lecture Notes in Management Science Vol. 6: ICAOR 2014, Proceedings

W. In the second part of the outer loop, code W is partially destroyed (after having saved W

in case it was the best code retrieved) in order to differentiate the search over the solution

space. In particular, the words of W are removed with probability pD. The outer loop (and

the algorithm) terminates when a given maximum time TimeEA has elapsed.

Tables

In the following tables lower bounds are given for A4
GC(n,d,w) and A4

GC,RC(n,d,w) for

4≤n≤20, 3≤d≤n and 21≤n≤30, 13≤d≤n. For each combination (n,d), the best result obtained

by the algorithms proposed here is reported, together with the best known result available

from the literature.

The entry B summarizes the results presented in Gaborit and King (2005), Chee and

Ling (2008), King (2003), Li et al (2002), Smith et al (2011), Tulpan and Hoos (2003)

and Tulpan et al (2002). The V entries reported without a superscript have been obtained by

the VNS algorithm for 4≤n≤20, while S entries reported without a superscript have been
obtained by the SA algorithm for 21≤n≤30. When the superscript E is present, the best

result has been obtained by the EA algorithm. When the superscript N is present, it

means that the best result has been obtained by new runs of the VNS method (with respect

to Montemanni and Smith (2008)).

The tests reported in Tables 1 and 2 were carried out on Dual AMD Opteron 250

2.4GHz / 4GB RAM machines with the following parameter settings for the algorithms:

TimeVNS=100000; TimeSB=500 for problems with n≤15, and 0 for problems with n>15;

TimeCS=2000; TimeHS=200; TimeIGS=1000; TimeMC=30; ItrSeed=20; CSRem=30 for

problems with n≤15, and 10 for problems with n>15; HSRel=2 for problems with n≤15, and

1 for problems with n>15; IGSChg=20; ItrSrc=10000; TimeSA=300000; Initt=30000;

Nitert=10000; Decrt=0.9; Finalt=300; TimeEA =300000; NP=10; NW=10000; NIT=100;

pA=0.1; pD=0.02. If TimeSB=0 then SB is run for one iteration in order to obtain a starting
feasible solution for the VNS approach. Multiple runs were used for the VNS algorithm;

typically 5 runs for each case and never more than 10 runs.

The values reported for the parameters were found experimentally during some

calibration experiments, and provided a satisfactory balance between computation times

and the effectiveness of the algorithms. The computation times for the best-known results

taken from Gaborit and King (2005) were stated there to be “up to a few days” on a

slightly slower computer. This is comparable with the computation times used here. Entries

of the tables followed by periods are optimal by the Johnson-type upper bounds in King

(2003). Entries followed by colons are optimal by max-clique computations in Chee and

Ling (2008). Entries in bold are new best lower bounds found by the algorithms discussed

in this paper.
Tables 1 and 2 suggest that the VNS algorithm is competitive with state-of-the-art

methods on most of the instances with n≤20 considered. In particular, it is able to match

116 previous lower bounds (59 for A4
GC(n,d,w) instances and 57 for A4

GC,RC(n,d,w) instances).

It also provides 73 new best lower bounds (30 for A4
GC(n,d,w) instances and 43 for

A4
GC,RC(n,d,w) instances). It is interesting to observe that VNS was able to match all

previously known optimal codes, and to find a previously unknown optimal code

A4
GC(11,9,w)=11. The effects of running VNS multiple times can be appreciated by

R Montemanni et al 173

comparing these results with those reported in Montemanni and Smith (2008), where

only one run was considered for each instance. The number of new lower bounds in that

case was only 52. The contribution of the SA algorithm can be appreciated for problems

with n≥20, for which results are reported here for the first time. The method proves effective

when d is close to n. For the other entries of the second part of Tables 1 and 2, the best

known results are retrieved (together with some new codes for n≤20) by the EA method.

It is more general than the other two approaches in terms of instances handled (it is the
only method able to deal with codes with more than a few thousand codewords). The

EA approach was also able to retrieve 3 further new lower bounds for n≤20. On the other

hand, EA seems to be dominated by the other approaches when d is close to n. The codes

corresponding to these new lower bounds, together with the new codes for 21≤n≤30, are

available at http://www.idsia.ch/~roberto/DNA09.zip or at http://data.research.southwales.

ac.uk/projects/.

Table 1. Lower bounds for A4
GC(n,d,w).

174 Lecture Notes in Management Science Vol. 6: ICAOR 2014, Proceedings

Table 2. Lower bounds for A4
GC,RC(n,d,w).

Conclusions

The generation of DNA codes has been considered from an algorithmic perspective. On

instances with 4 ≤ n ≤ 20 and 3 ≤ d ≤ n, the methods presented were able to improve the

previously known code for 80 instances and matched the best-known code for another
114 instance (over 267 instances considered). The algorithms were also able to provide

the first lower bounds for codes with 21 ≤ n ≤ 30 and 13 ≤ d ≤ n.

R Montemanni et al 175

References

Bäck T (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University Press

Chee YM and Ling S (2008). Improved lower bounds for constant GC-content DNA codes. IEEE
Transactions on Information Theory 54(1):391-394

Gaborit P and King OD (2005). Linear construction for DNA codes. Theoretical Computer Science
334:99-113

King OD (2003) Bounds for DNA codes with constant GC-content. Electr. Journal of Combinatorics
10:#R33

Kirkpatrick S, Gelatt C and Vecchi M (1983). Optimization by simulated annealing. Science
220(4598):671-680

Koul K (2010). Heuristic Algorithms for Construction of Constant GC-content DNA codes. Master
thesis, Università della Svizzera Italiana

Li M, Lee HJ, Condon AE and Corn RM (2002). DNA word design strategy for creating sets of
non-interacting oligonucleotides for DNA microarrays. Langmuir 18:805-812

Marathe A, Condon AE and Corn RM (2001). On combinatorial DNA word design. Journal of
Computational Biology 8:201-219

Montemanni R and Smith DH (2008). Construction of constant GC-content DNA codes via a Variable
Neighbourhood Search algorithm. Journal of Mathematical Modelling and Algorithms 7:311-326

Smith DH, Aboluion N, Montemanni R and Perkins S (2011). Linear and nonlinear constructions
of DNA codes with constant GC-content. Discrete Mathematics 311(14):1207-1219

Tulpan DC and Hoos HH (2003). Hybrid randomised neighbourhoods improve stochastic local
search for DNA code design. Lecture Notes in Computer Science 2671:418-433

Tulpan DC, Hoos HH and Condon AE (2002). Stochastic local search algorithms for DNA word
design. Lecture Notes in Computer Science 2568:229-241

