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Abstract. In this work we examine the problem that electricity generators face when offering 
power at multiple locations into an electricity market. The amount of power offered at each node 
can affect the price at the other node, so it is important to optimize all offers simultaneously. Even 
with perfect information (i.e. known demand, and known offers from competitors) this is a non-convex 
bi-level optimization problem. We first show how this can be formulated as an integer program 
using special ordered sets of type 2 (SOS2) enabling this problem to be solved efficiently. We 

then extend this work to allow for uncertainty, and hence find the profit maximising offer stacks 
at each node (as opposed to a single quantity, as in the deterministic case). We demonstrate the 
intuition that we can gain from this model in a simple two-node example, and discuss extensions 
to this work such as the co-optimization of reserve and generation, as well as demand-side bidding. 

Keywords: electricity markets; integer programming; bi-level optimization 

 

Introduction 

New Zealand electricity market 

In the New Zealand electricity market, every half-hour generators submit offers, in the 

form of offer stacks (a collection of up to five tranches, each specifying a quantity of 

power and a corresponding price). These offers are used by the system operator 

(Transpower) to determine how much electricity each generator should produce (dispatch) 

as well as nodal power prices at every location in the country. 

These dispatch quantities are determined through a large linear program, which has 

the objective of minimising the cost of generation, while meeting the demand over the 

country, while complying with network constraints. This model is known as SPD, which 

stands for scheduling, pricing and dispatch. 
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In this paper, we will present an optimisation model which strategic generators can 

use to determine what offer stacks to submit to the system operator in order to maximize 

their profits. Initially, we will present this model in the context of a single node, and 

show how an optimal offer stack can be constructed. We will then extend this model 

over networks, and present a two-node example to gain some intuition into the strategic 

incentives that networks provide. We conclude by discussing some extensions to this 

model. 
We will initially introduce the simplest version of the SPD model: the single-node 

dispatch model. This will allow us to develop the method for constructing offers stacks 

clearly, before we extend the model to handle networks, where generators potentially 

offer simultaneously at multiple nodes, in section 5. 

Single-node dispatch model 

        

   

         
   

   

            

 

 

where   is the set of tranches (quantities of electricity,   , offered in at a constant price, 

  ) offered by generators, indexed by  ; d is the demand at the node, and    is the quantity 

of tranche   dispatched by the system operator. Finally,   is the shadow price on the 

demand balance constraint and gives the market clearing price, for all power that is 

bought and sold. 

This optimization problem seeks to minimize the cost of generation while ensuring 

enough generation is dispatched to meet the demand, while complying with the offered 

tranches. This is a uniform price auction, as discussed in Schweppe et al. (1988). In the next 

section we will use this single-node dispatch problem to try to understand the behaviour 

of a profit maximizing generation offering power into this market. 

Single-node optimisation 

A strategic generator, wishing to maximize its profits would consider how its actions 
(i.e. its choice of tranches) would affect the total quantity dispatched and also the market 

clearing price. This can be modelled as a bi-level optimisation problem, where the strategic 

generator chooses their offer stack, anticipating the optimal dispatch. In a deterministic 

setting, a generator with a single plant would essentially be choosing a quantity   to 

solve the following bi-level optimization model: 
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Single-node bi-level problem: 

           
          

        

   

           
   

   

            

 

 

where    is the capacity of the strategic generator’s plant; and      is the cost of producing 

  units of power over the period. The embedded linear program gives the correct value 

of  , as a function of the generation  . This optimisation problem finds the offer quantity 

  for the strategic generator, which yields the maximum profit, given known offer 

stacks for each of the other generators, later we will incorporate uncertainty, but first we 

will show how to model the above as a MIP using special ordered sets of type 2 (SOS2). 

In its current form, this problem would be extremely difficult to solve. Firstly, since 

the objective is bi-linear; and secondly we have an optimisation problem within the 

constraints of the bi-level program. One option for solving this could be to find the optimality 

(KKT) conditions of the dispatch problem, and embed those within the above optimization 

problem as either complementarity constraints, or using binary variables and big-M 

constraints. The latter method was implemented by Nates (2010), along with an approximation 

of the objective function and was found to be rather inefficient. Philpott et al. (2005) 

have also considered this problem using dynamic programming, albeit solely for a generator 
situated at a single node. 

Piecewise-linear reformulation 

In this paper, we will present an alternate approach which is both efficient and requires 
no approximation. Consider the dispatch problem presented earlier. From the optimality 

conditions of this problem, it can be seen that the solution can be found by simply ordering 

the tranches from the cheapest to the most expensive. Moreover, if there exists a partially 

dispatched tranche, then the market price must equal that tranche's offer price, otherwise the 

price must be greater than all fully-dispatched tranches and less than all undispatched 

tranches. These conditions on price can be shown to be equivalent to simply choosing a 

point on an offer stack sorted from cheapest to most expensive. Let us consider the simple 

offer stack shown in figure 1; this offer stack depicts 4 tranches. 
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Fig. 1. Offer stack of non-strategic plant. 

We can parameterize the offer stack, as a function of  , the distance travelled from 

the origin. These piecewise-linear functions will be called      and     . Using these 

piecewise-linear functions, we can rewrite the optimisation problem for a generator as 

follows: 

           
          

        

       

 

 

Note that we have not shown the full formulation of the piecewise-linear functions; 
these can be modelled using special ordered sets of type 2 (Beale and Tomlin, 1970), or 

by utilizing the piecewise-linear functionality of a modelling language such as AMPL 

(with CPLEX). However, this model still has a bilinear term in the objective; this can be 

made linear, as follows:  
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where          is the residual demand at price     , or the demand remaining after all 

other tranches with prices less than      are dispatched. On the surface, this still appears 

nonlinear, since we have the term            . However, recall that                is the 

parametric representation of a piecewise-constant function. This means that whenever 

      is increasing,       is constant, and vice-versa. Thus we can define:         
            , and        will be a piecewise-linear function of  . This leaves us with 

the following formulation, which can be solved using a standard integer programming 

solver (so long as the cost function is also piecewise linear. 

 

                   

          

         
 

Constructing a profit-maximizing offer stack 

So far, we have only considered maximizing profit for a single scenario; i.e., we knew what 

the demand would be, and what offers other generators would submit. This model results in 

a single optimal price and quantity which maximizes profit. In fact, when you submit 

your offer, you are not sure what offers have been submitted by other firms, and there 

will be uncertainty with respect to wind generation, as well as changes in demand. This 
means that instead of simply choosing a single quantity that maximizes profit, you want 

to submit an offer stack that maximizes expected profit. We will denote this uncertainty, 

for each scenario     by a superscript, e.g. the demand in scenario   would be   .  

In order for the offer stack that you submit to the market to be valid, it must be 

monotonically increasing. This requirement means that it is not possible to construct an 

offer that will be optimal for each realisation of the uncertainty. The lines in left graph 

in figure 2 are (inverse) residual demand curves for each scenario and the dots on the 

left plot show the optimal dispatch points for each scenario. It is clear that no monotonically 

increasing function passes through all these points, so instead we must seek to maximize 

the expected profit, given the distribution of possible scenarios; the offer stack which 

maximises this expected profit is shown on the right of figure 2. Note that in order to 
comply with the monotonicity requirement, lower profits are attained for certain scenarios. 
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Fig. 2. Multiple scenarios, with and without monotonicity constraints. 
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We can construct this offer stack by adding additional constraints to the problem. If 

we know in advance that the offer stack will hit the various scenarios in the following 

order:              , then ensuring monotonicity could be simply achieved by adding 

linear constraints, as follows: 

 

                        
                        

 

A situation where you would be able to enforce the monotonicity in this manner is 

where the only uncertainty is coming from demand (in this case the offer stack will pass 

through the residual demand curves from the lowest demand to the highest. However, 

where it is not possible to predict the order of the scenarios, an integer programming 

approach is required. To do this we introduce a set of binary variables:     which is set 

to 1 if scenario    is passed through after scenario    in the offer stack, and 0 otherwise. 

Finally, note that each scenario     has a corresponding probability of    . Thus we 

can create the following profit maximization problem. 

Single-node offer stack construction: 

                          

   

                    

           

                        

                                  

                     

                      

 

 

In this model, we now seek to maximize expected profit (as opposed to the profit for 

a particular scenario). The last four constraints enforce that the sequence of dispatch 

points on the offer curve are increasing monotonically. This is done using a big-M type 

constraint to enforce and relax constraints depending on the order in which the offer 

stack passes through each of the scenarios. Finally, we ensure that if       then 

     , and the   is binary. This model can be used to determine the offer stack that a 

single generator can submit at a single node in order to maximize its profit. 

Bidding at multiple locations over a transmission network 

In the previous section, we have assumed that all offers and demand occur at a single 

node. In this section, we will detail how the generator offer model can be extended to 

the case where there is an underlying network. The dispatch problem in this case must 
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be extended, to include transmissions lines and capacities; specifically, we now have a 

set of nodes   and a set of arcs  , as shown below. Following this we will show how 

the offer stack construction formulation extends to allow us to optimise the generation 

of multiple plants located over a network. The model that we have developed is called 

the Offer Model over Electricity Networks (OMEN). 

Network dispatch model 

        

   

       

    

     

      

     
      

           

           
    

        

                
     

       

            

 

 

where      is the subset of tranches that are offered at node  , and   is the set of 

loops in the network. The first constraint simply ensures that each node in the network 

satisfies a power balance requirement (i.e., the generation at a node plus the net flow into 

the node equals the demand. The second constraint ensures that the physical loop-flow 

laws are respected. Finally, the third constraint ensures that the power flow along the 

line    is less than the capacity of the line in both directions. 

OMEN: Offer Model over an Electricity Network 
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From the optimality conditions of the problem and using the piecewise-linearization, we 

construct the following mixed-integer program to maximize the profit of a firm who owns 

multiple generation plants for a given scenario. (It is possible to extend this formulation to 

allow for multiple scenarios, but for ease of understanding we will present this model 

for only a single scenario; see Weng (2013) for the full formulation.) 

The above formulation builds on the earlier model, with the third constraint giving 
the relationship between prices at either end of a transmission line, which come about 

from the dual constraint corresponding to the primal flow variables. The final 5 constraints 

model the complementary slackness conditions associated with line capacity constraints 

in the network dispatch problem. 

Two-node network example 

To understand some of the incentives that firms have when offering at multiple nodes, 

let us first consider a simple two-node network (A--B), joined by a single line. The strategic 

firm has a plant at each node, with the plant at node A having slightly higher marginal 

costs. At each node there are a number of other non-strategic generators submitting offers, 

and what we wish to do is find a pair of offer stacks (one at each node) for the strategic 

firm that maximises its profit over both nodes. To understand the effect that a line can 

have, we will examine the optimal offer strategy under three line capacities: a capacity 

of 0MW, which is equivalent to two separate markets; an infinite capacity, which is 

equivalent to a single unified market; and a 50MW line, which may or may not become 
congested, depending on how the strategic firm offers. The final of these cases is the 

most interesting as the other two reduce to single-node problems. 

Figure 3 shows the optimal offer stacks of the firm at node A (left) and node B 

(right). The line marked with a square is the optimal offer when the line is 0MW. We 

can see that the prices offered at the nodes are different, and power is withheld at both 

nodes; this is because the two markets are independent. At the other extreme, when the 

line is infinitely large (the offer stack marked with a triangle), we see that the optimal 

strategy is to fully utilise the cheaper generator (at node B), and withhold at node A in 

order to maintain a higher price (which is the same at both nodes). Interestingly, the optimal 

strategy for when the line is 50MW (marked with a circle), does not lie between these 

extremes; instead, the firm withholds at node B and attempts to be fully dispatched at 
node A – this causes the transmission line between nodes A and B to become congested, 

with the price at node B higher than that of node A. This occurs because the residual 

demand elasticity is lower at node B meaning that prices increase more rapidly when 

withholding. 
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Fig. 3. Profit maximizing offer stacks at node A (left) and node B (right). 
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This behaviour could not have been captured using traditional single-node models, 

since the line is not becoming congested in all scenarios, and thus the curves must be 

constructed simultaneously. Furthermore, understanding these strategic incentives that 

exist over networks is important not only for generators, by also for the regulator (in 

New Zealand, the Electricity Authority); this is because in order to have a well-functioning 

and efficient market, the correct incentives should be in place. Particularly, this may be 

useful when considering line upgrade proposals, since the change in incentives can be 
identified. For examples, the grid investment test, overseen by the Electricity Authority 

(2010) states that competition benefits should be taken into account when considering 

grid upgrade proposals. 

Extensions 

We have implemented this model using real New Zealand generation and transmission 

data (for the full New Zealand network). However, this is not presented here due to space 

constraints. Non-convex cost functions and contract positions for gentailers (generators/ 

retailers) have also be incorporated. Transmission losses, mathematically can be included in 

the model, however, this significantly increases the size of the model needing to be solved. 

We are currently investigating methods to quickly find good incumbents to speed up the 

branch and bound process. Finally, we are intending to add the reserve market to this model, 

and consider how one might offer into the energy and reserve market simultaneously, 

either as a large consumer or a generator. 
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