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Keywords: Registered (finite-source) commuters and (infinite-source) visitors share a commuter parking lot. We develop
Parking a novel, hybrid-demand equilibrium queueing model, with demand dynamics, for use in traffic-engineering
Queueing these lots. Our transient version can help analyze the daily lot startup process. Finally, we propose criteria
Scheduling and take initial steps to evaluate our models. While the problem is not new, there are essentially no other
Transportation published analytical results or detailed studies regarding commuter lot engineering.

Introduction

With Monmouth University (MU) as our study partner, we previously developed an enterprise-wide model and prototype
software system for optimized academic scheduling, with explicit consideration of the school’s shared commuter/visitor
parking lot. Pack et al (2011) reported that our optimization freed up more than 20% of MU’s classrooms for other uses,
even though most MU administrators had felt that space was “tight”. However, MU emphasized that such reuse opportunities,
potentially worth millions of dollars in revenues, could not be realized unless we also helped increase throughput in the
existing commuter parking lots, which already had a high average utilization of about 80%. The result: by reducing the
average time students must spend on campus and flattening program schedules, our optimization increased by 25-35%
potential MU lot-flow rates. Perhaps surprisingly, that paper is not only the first publication on commuter parking lot
management for an academic institution but, apparently, one of very few papers on commuter parking engineering itself.
In this paper, motivated by analyses of sampled MU parking data, we propose and illustrate a hybrid-demand equilibrium
queueing model, with demand dynamics reflecting daily and weekly traffic variations, that can be used to traffic-engineer
commuter lots. Because most commuter parking systems fill up to near capacity each day, we also develop a transient
version for better understanding the daily startup process. Finally, we begin evaluating our models via the following criteria:

e Modeling Accuracy: Do the models capture/reproduce the essential elements/ attributes of the commuter-parking
problem? Given parameter values, do the models produce meaningful results in the region of engineering interest,
i.e., is the typical/average “modeling error” small? In essence, this criterion looks at systematic, and not stochastic,
modeling errors.

e Engineering Accuracy: Considering various sources of uncertainty, do the model’s results match reality? That is,
performance assessment and capacity-engineering decisions should account for the effects (usually reduced capacity)
of: systematic modeling error that may bias results; demand dynamics (a stochastic part of our model); and
measurement, forecast and parameter-estimation errors.

e Model Validation: Ultimately, do the model and associated methods work, i.e., provide sufficient value in the
parking lot management process? This criterion includes the effects of the other criteria.

In this paper, we focus primarily on Modeling Accuracy, whereas Pack (2015) will use existing data from MU parking
lots to take a first look at Engineering Accuracy. More research, including simulations and additional field studies, will be
required to fully evaluate, refine and implement our models.

Parking lot design is often cited without much detail, as a good application of queueing theory. The most common
(equilibrium) analytical model is the “Erlang B> (M/M/N/N) with infinite-source Poisson (Markovian) arrivals, exponential
(Markovian) parking times and N parking spaces with no waiting or overflow area. These assumptions make analysis and
software implementations fairly straightforward. However, in practice, arrivals may actually be finite-source (especially
for commuters), “peaked” (not random), and dependent on the time and day of week; and waiting or overflow areas may
be available. Arnott et al (1991) has an analytical deterministic commuter-parking model, with a focus on pricing. Because,
commuter-parking systems, especially those on an academic campus, may have many lots with complex parking strategies,
researchers often use detailed simulations; see, e.g., Harris et al (1997). Boxma (1986) assumes a hybrid-demand
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(non-parking) system; however, his queueing model differs from ours in that he has a single server and infinite waiting
space. Finally, none of these papers addresses the effects of demand, measurement and model uncertainty on the quality of
traffic engineering results.

Shared Commuter Parking: Our Definition

Registered commuters regularly try to park in their shared Lot L, which can hold /V cars. When space is available, they
stay for many hours, leave and return in a day or so to repeat the process. Visitors show up more randomly; when space is
available, they stay for several hours and do not return. When space is not available, a commuter or visitor will may seek
space in virtual overflow Lot O, with /N, spaces; whether successful or not in finding space in O, commuters will, next,
return home until the following day, while visitors leave the system. Owners may have many goals for their parking lots,
including large profits, low costs, business efficiency and employee/community support. However, undoubtedly, one goal
is to have high lot (investment) utilization, while also providing excellent service to registered users. Unfortunately, with
limited access to good tools, parking lot managers may limit the number of registered users to be close to lot capacity, 1V,
while also severely restricting visitors, unnecessarily reducing average lot utilization.

Hybrid-Demand Equilibrium Queueing Model for Commuter Parking

We develop a new equilibrium hybrid-demand queueing model, with demand dynamics, that is consistent with most
elements of our above definition and which could provide better support for the joint goal of good service and high lot
utilization. Our equilibrium model includes finite-source (commuters = Type 1) and infinite-source (visitors = Type 2)
demands that share a lot’s parking capacity. We begin with a static version with fixed parameters and then present a
dynamic version (variable parameters) along with the elements of a typical traffic engineering process that must reflect the
impact of various uncertainties.

In our static version, we assume that each commuter parking Lot L operates independently with /V; spaces available for
both visitors and sy, registered users. (We usually omit the subscripts L.) Let J; and J, be the random number of Type 1
and Type 2 cars in Lot L at some point in time, assuming that cars not finding a space are “overflowed” from (leave) L;
all Type 1 customers may request access to L a random time later (e.g., tomorrow) after service or overflow. As Cooper
(1981, page 131) motivates, there exists an equilibrium joint “product form” distribution at a random point in time:
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Type 1 “quasi random” idle source load is a;= y/l, yis the independent arrival rate for each idle source and 1/44 is the
average park time; and Type 2 offered load is a,= A/ls, A is Poisson demand arrival rate and 1/ is the average park time.
While, usually, service times are assumed to be exponential, this is not critical to most analyses. This result can be readily
proven from the system birth-death (B-D) equations and boundary conditions, assuming that “births” (arrivals) occur
when a Type-1 or Type-2 source requests a parking space and one is available. Finite-source arrivals occur only when
there is an idle Type 1 source. Deaths correspond to service completions; overflows occur when arrivals do not find a
parking space. Then, analogous to other hybrid-demand systems, respective overflow probabilities are:
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where the superscripts in (4) reference the respective terms for Type 1 and 2 demands. Then, the average percent utilization
is

Py N a oy ™ IOOLs,N,al,az /N.

This “static” model seems to have most elements needed to characterize the performance of commuter parking lots with
hybrid demands. However, as we discuss in our Evaluation section, below, we must be careful how we apply these results
because our model omits O and allows spurious returning demands. We’ll see that 7Z L and p can be erroneously large, but
mostly for parameter values that may be inconsistent with typical commuter behaviors. To minimize this concern, we offer a

more optimistic/ realistic (O exists) performance measure, the proportion of demand served by O:
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where N , the number of spaces in Lot O, is large enough to capture essentially all of Lot L’s overflows (i.e., PT does
not change significantly when we further increase n ). Note that (5) would be correct for I, 11? and average time
congestion if both user groups were Poisson with no queue (i.e., Erlang B).

To better reflect the variation of demands, both within the day and across the days of the week, we now develop a
dynamic version. We assume there may be more than one engineering period (e.g., daytime vs. evening) so that not all
daily demands need be in one model. We treat the variations in commuter and visitor parking demands separately. First,
not all registered users (e.g., students or workers) need access to L for all hours in a day or all days of the week, and few
would need access more than once a day. In fact, for most commuters, parking requirements are strongly related to their
course or work schedule. Thus, we assume that .S, the number of Type 1 sources, is a random variable in (1)-(5). Specifically,
we assume that, for each engineering period, S has a density function, fs(s), where 0< s < §,4 and Sy, is the number of
cars registered to use L. Similarly, for the Type 2 users, A4, is a random variable with density function, g4,(a, for a, > 0.
However, we assume a; is fixed because it is relatively stable, for an “average commuter,” in each engineering period.
Since, f and g are distributions over “space”, we claim a form of ergodicity to let them represent time variability over the
day/week. Then, assuming § and A, independent of each other:

H#(l) =Ly, [H(slzv a AZ]_f T MgAz (a,)da, (6)
- a0 1= /(0)
0, = 00, 1=3, | 0, . (5., (a)da, )
s=0 a,=0
L#,m SA2 Ly ) AZ] Z T LS,N,al,aZfS(S )gA2 (a,)da, ¥
5=0 a,=0

Average lot utilization is given by pj‘w =100 Lf /N Finally, analogous to (5),
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where, as above, ]\7 is sufficient capacity for virtual overflow Lot O. Then, a design objective might be stated as
I, <b* or PT, SN <b". As emphasized in the Introduction, the challenge for commuter lots is to achieve good service,
ITWj or (PTH < b= .01, and high utilization, g~ 80%+, even for Sye > N.

Thus, the dynamic version reflects the very real phenomena of daily and weekly variations in commuter and visitor lot-use
patterns for a given engineering period. As you might expect, for a given average design objective, b*, this variability
effectively reduces lot capacity compared to that for the static model. To illustrate the point, if we use the assumptions,
made in our Modeling Accuracy discussion below, we find that demand dynamics alone reduce lot capacity 4 for visitors
by a factor of 3 compared to a, " for a static model, i.e., Al =d,/3 at b*=01. This impact would need to be taken into account in
a traffic engineering process that might, for example regularly repeat the following cycle for a given lot:

Collect Lot Usage Data=» Estimate Current Performance=» Forecast Future Lot Demands W
AMake Lot Changes €Use Model to Study/Engineer Lot €Estimate Model Parameters €

In Pack (2015), we discuss this process using sampled MU data to illustrate key ideas and initial methods. We also highlight
the significant role that various uncertainties, e.g., demand dynamics and measurement, model and estimation errors, must
play in an effective performance management and engineering process.

Hybrid-Demand Transient Queueing Model

The equilibrium conditions in the above model are in effect after the daily startup process. We now introduce a (simplified)
transient model that could help administrators understand (and improve) startup performance, e.g.: how the demand mix
affects lot fill rates; how long it takes for the lot to become congested; and best lot-space allocation strategies. The transient
model ignores both capacity limits and possible service completions (“deaths™), i.e., we assume an infinite capacity birth-only,
transient birth-death (B-D) model with fixed (static) parameters N, s (say, Smax), ¥ and A. Given these assumptions, the
respective demands at time t, J;(#) and J,(?), can be considered independent. Clearly, J,(#) is Poisson with mean At However,
we found no citation for J;(2), which has a binomial form:

s .
B(j,0)=P[J,(t)=j]= (’_je_m[e” —1J for 0<j<s,and0 forj>s. (10)
Equation (10) satisfies the usual B-D condition:
dP (/ t)
dt

and boundary condition: P;(0,0)=1, with y = (s-j)y for 0 <j < s and 0 for j > s. We will want to analyze Qs ,(N,t)=
PlJ()+J(t) = NJ as a measure of how the startup process approaches system congestion, given lot capacity /N. We find that
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with step function H(x)=I for x>0 and 1 otherwise. We postpone until future publications, e.g., Pack (2015), detailed
examples of the use of the transient queueing models. However, our initial studies, using fairly noisy data, suggest that it
predicts fairly well the timing of MU’s congestion peaks and that, as you might expect, (11) seems much more sensitive to
ythan to 4.

Evaluation of Models: Criteria and Initial Steps

This paper focuses on Modeling Accuracy for the equilibrium dynamic model. However, in order to provide insight into
the difference between our static and dynamic versions, we include one aspect of Engineering Accuracy: how stochastic
demand dynamics create uncertainty that reduces engineered lot capacity. The issues raised here for the equilibrium case
mostly do not apply to our transient model; hence, we postpone its discussion until Pack (2105), which deals with Engineering
Accuracy and data uncertainty for both equilibrium and transient versions. In addition, because Engineering Accuracy
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depends on Modeling Accuracy, some of the examples in this paper are revisited in Pack (2015), where we increase /N to
228, consistent with one of MU’s lots, and make direct use of actual MU lot measurements. Finally, the evaluation discussions
in both papers necessarily illustrate how the models provide insight into engineering tradeoffs in lot design and management.
Model Validation will still require considerable work in the future.

Modeling Accuracy focuses on systematic modeling errors that may bias results. Specifically, for the equilibrium
model, we are mostly concerned with attributes of the commuter-parking problem that are, or are not, explicitly and
appropriately incorporated in the model. Here, we cover five closely-related aspects of modeling accuracy: (i) overall
consistency of model with our definition of commuter parking in a shared Lot L; (ii) (possible) omission of virtual overflow
space, Lot O; (iii) spurious returning demands that are inconsistent with commuter behavior; (iv) biasing effects of large
values of parameter, a;; and (v) ability to predict the important condition of good service at high levels of utilization. We
first look at issues (i) — (iv) together, and then (v). To illustrate our points, we use fairly small example systems (N=100),
and guestimates, based on our experience with MU, of model parameter values. Let’s consider, “under what conditions,
i.e., parameter values, network sizes and configurations, are the equilibrium models, (6)-(9), both appropriate and accurate
enough for engineering purposes?” First, an assumption of equilibrium makes sense, especially for capacity engineering,
if we ignore the lot’s short periods of start up (and shut down). This is commonly done at our trial site, MU, because lot
data are not even collected for the first two (transient-phase) hours of the day. Second, we look at model/definition consistency,
L’s overflow space, O, and spurious demands. When there is 7o overflow space (O), our model is largely consistent with
the commuter definition because cars, completing service or overflowing, seek parking space again, in L, at a random
time later; visitors, whether completing service or overflowing, exit the system. However, in reality (e.g., MU’s operation),
overflowing commuter and visitor cars usually seek alternative parking in large virtual Lot O; whereas, the model would
either ignore O or treat O and L together as a system. Whether O exists or not, by allowing commuter cars to return a
random time later, the model erroneously (in most cases) allows multiple (spurious) parking attempts (“retries”) by a given
user in L on the same day. We now motivate and use examples to show how these three modeling errors issues (O, spurious
demands, large a;) can be minimized by: using PT” (i.e., (9)) for engineering since it assumes that O exists; keeping Type
1 demands, per source, small, say a; < 3; and engineering each Lot L to have few overflows, say, b*=.01, so that 11"~
IP~PT’. The motivation: The use of PT" not only recognizes O; it also reduces spurious demands because only commuters
completing service become active sources again; however, some may return the same day. It should be clear that, for
commuters, surely a; = ¥4 < 3. This is because, for commuters, ¥ < I attempt/ (engineering-period) and 1/14 is probably on
the order of an engineering-period, where an engineering period might be something like 8am — 6pm. We now use examples
and graphs to show how these strategies work together. For our dynamic model, we assume/guestimate that b*=.01,
N=100, ]\70=40 and that fg(s) is a truncated negative binomial with 0 < s < s,,,=110, the origin at §,,,., and the open end
directed towards s=0. (Note: we have found that fg truncation effects can be ignored if §,, > IV = 100.) We also let
zs=var(S)/E(S)=1 and B=E(S)/Sma=-85, so that E(S) =94.
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In Figure 1, we plot 1%, I, PT* and b*=.01 versus a; for A =7, which is large enough to cause some congestion.
We see that, for a;< 3, 17#(1)~ If(2)~ PT, but that the I7's and PT* dlverge for a;>> 3. In Figure 2, we have a similar plot,
except that we vary 4, and fix a;=3. Again, curves IT'P, 1T, PT* are fairly close to each other, especially near A7, the
value at b*=.01. Usmg IT suggests an AJ capacity of 6.0, while PT" is more optimistic with A;=7.0. These dlfferences
would be even smaller if ;<< 3 or b* << 01 Clearly, we need much more work on Modeling Accuracy, including analysis,
simulations and field studies. For example, while we have argued here that the effects on Modeling Accuracy of omitting
O may be small, it might be helpful to extend our model to include O explicitly. We can write four-variable B-D equations
that include finite overflow space, O, but it is probably quite difficult to obtain analytical results. Kosten has results for a
similar system, assuming all demands are Poisson and Ny=cc (Cooper (1981, Chapter 4)).

Regarding issue (v)-- Can our model accurately represent the usual commuter parking system property: “good service
(e.g., b*=.0I) with high average facility utilization (o' = 80%)” even when visitors use the lot (A_2 > () and commuter
registrations exceed lot capacity (S, > N)? First, a system with only Poisson demands could not support this goal (service
would deteriorate rapidly for high utilizations). Second, with hybrid demands, as various uncertainties rise, it may be hard
to achieve high utilization unless, e.g., we greatly reduce visitor traffic limit 47 at b*=.01. Thus, as an existence proof for
hybrid demands we have found that with assumptions similar to those in Flgure 2, P* (or If(l)) = b'=0I and p' = 75 -
80% when Smax =110 and A;=7. We revisit this issue in Pack (2015) for systems more reflective of MU’s operation.

Engineering Accuracy addresses the effects of various uncertainties on engineering: systematic modeling error that
may bias results; demand dynamics (a stochastic part of our model); and measurement, forecast and parameter estimation
errors. These uncertainties impact critical engineering questions, e.g.: “is the lot meeting performance objectives?”’; “do
we need to add capacity/how much/where?”’; and “are the risks of your decisions acceptable?” Clearly, Engineering Accuracy
is affected directly by Modeling Accuracy. As we argued above, uncertainties due to systematic modeling errors can probably
be minimized in parameter regions of engineering interest. So, we now consider how uncertainty due solely to demand
dynamics affects engineered lot capacity. To do so, we created (do not show) a graph similar to Figure 2 for the static
model (a;=3, s=E(S)=94). We found the engmeered limit for visitor traffic, a, =20, is 3 times 4, =7 at b*=.01 in Figure
2. Key insight: system capacities, e.g., control A (ors ) at b*, will be further reduced, beyond the 47 factor of 3 for
demand dynamics, if zg increases, ay, decreases or, as in Pack (2015) we account for measurement, model and estimate
uncertainties. In particular, we must consider the effects of uncertainty, due to measurement/forecast errors, on model-
parameter estimates and engineering results. This is quite relevant because the data, obtained from MU and utilized in our
early analyses, were from bi-hourly, manual lot counts. Clearly, advances in data collection technologies, including
intelligent cars, sensor networks and wireless, will help reduce uncertainties and improve commuter-lot engineering.
Model Validation will require much work after the other two evaluation criteria are better understood.
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Summary and Future Work

There are several major contributions of this paper. First, we propose and illustrate a novel hybrid-demand equilibrium
queueing model, with demand dynamics, that can be used for commuter parking lot traffic engineering. We also present a
simplified transient queueing model that can provide insights into startup process performance. Then, we took a first look
at evaluating our models in categories: Modeling Accuracy, Engineering Accuracy and Model Validation, with focus here
on issues and examples for the first criterion. We also looked at one aspect of Engineering Accuracy: how demand
dynamics uncertainties alone effectively reduce lot capacity for visitor traffic by a factor of 3. Finally, we showed how,
with appropriate engineering assumptions, one can study tradeoffs among system parameters and results.

We still need more work on evaluating, refining and implementing our models for engineering realistically-sized and,
possibly more generally configured, commuter parking lots in the presence of various uncertainties. In Pack (2015), we
leverage our experience with MU’s data and lot operations to begin to look at Engineering Accuracy, while revisiting
some issues raised in this paper. Specifically, we calculate and contrast, for MU’s Lot B (/V=228), performance statistics,
both directly from MU measurements and indirectly from our new equilibrium queueing models, with estimated parameters.
We emphasize that, because uncertainties usually reduce system capacity or utilization for a given objective, it is
important to account for (hedge against) their effects in decision making. New data technologies, e.g., intelligent cars,
sensor networks and mobile wireless, will improve lot operations and engineering methods. Thus, to support future
research and practice, it may be helpful to develop standards for commuter parking lots that include: service objectives;
measurement requirements; queueing models; and engineering techniques.
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