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 We describe an approach for generating robust itineraries for disruption management in airlift operations. 

The concept of a robust optimal policy and a robust worst-case itinerary are developed. A polynomial 

algorithm that calculates both the robust policy and worst-case itinerary for a discretized version of the 

problem is presented along with preliminary computational results for a small problem. 

Introduction 

In this article we consider an aspect of the airlift mission re-planning problems. In such problems there is already a 

planned itinerary which faces disruptions. Such  problems are faced by courier delivery services, commercial airlines, and 

the US Air Mobility Command when planning and executing the movement of personnel and equipment for the US 

Department of Defense. Some of the challenging features of these missions include demand uncertainties and mission 

disruptions and delays caused by weather events, breakdowns, or changes necessitated for command and control. In 

various formulations of the airlift problems the key decision variables involve the choice of appropriate ‘itineraries’ from 

a pre-generated collection and the objective is to achieve the best performance on average. We define these terms more 

precisely in a later section. 

In the present article we generalize the notion of an itinerary to that of a ‘policy’ and describe a method for generating 

policies that are robust in the face of disruptive events and deliver optimal performance in the worst-case scenario. A policy 

together with a disruption scenario realization yields an itinerary. The output of our model can be the policy itself or 

the realized itinerary in the for any disruption scenario. 

Literature review 

For an introduction to robust optimization see the book by Ben-Tal et al (2009) and the references therein. In particular, 

the survey by Bertsimas et al (2007) provides some useful perspective. In Stojkovic et al. (2002), an extension of 

PERT/CPM models is proposed for solving Day of Operations Scheduling problems. However, this model only allows 

small ground delays as recourse decisions and it can only handle small disruptions. Smith et al. (2004) present an incremental 

optimization approach for the Barrel Master's problem at Air Mobility Command (AMC). Wilkins et al. (2008) propose a 

decision support system for AMC flight managers that identifies disruptions that require corrective actions and offers 

suggestions for dynamic rescheduling of missions. Finally, Wu et al. (2009) survey the various simulation and optimization 

approaches that one may take for airlift problems. 

There are many variants of shortest path problems with cost uncertainties, for example, Montemanni & Gambardella 

(2005) give a method for solving shortest path problems, which have interval uncertainties on edge costs. The applicability 

of their approach for airlift problems could be somewhat limited. 

The most important reference in the remainder of this article is a recent article by Bertsekas (2015) who develop 

algorithms for robust optimization under uncertainty. We adapt and simplify their general approach to our problem. Also 

relevant to this discussion is the work on shortest path games by Yu (2014). 
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An extended state-space graph 

We shall assume that we are given a planned itinerary that serves a set of demands. In other words, we are given a 

sequence of stops that must be traversed in a specified order. We are also given the minimum length of on ground time 

that an itinerary must spend at each stop, the maximum duty period  for the crew, and a time horizon of  periods. We 

consider stochastic disruptions that make certain locations unavailable for landings and takeoffs for a length of time. 

We consider discretized time and duty hours and model the problem on an extended location-time graph. This graph 

represents the state space associated with our scheduling problem. We incorporate crew duty cycles in the description of 

our graph.  

Nodes: A node denoted           where          , is the set of locations,          ,           , and 

           specifies not just location and time but also the duty cycle – the number of hours that the crew on board has 

already worked. We do not allow nodes where the duty cycle exceeds  . For each time and elapsed duty cycle      , 

every geographical location   in the set   gets represented twice in the set of nodes, once as an arrival location             

and once as a departure location            . In addition there is a super source S and a super sink D that are connected to 

all departure nodes from    = 0, and all arrival nodes at    =   respectively. 

Edges: There are several different classes of edges in this graph. We enumerate these classes below: 

1. Edges that go from an arrival node             to departure nodes                       . Depending on 

the nature of the stop (e.g., loading, unloading, crew change, refueling, etc), the aircraft needs to remain on ground 

for a minimum length of time; this determines the allowable values of  . Such edges correspond to a ‘regular stop’ 

at a given location i.e., a stop without any crew rest or crew swap. 

2. Edges that go from an arrival node             to departure nodes              . These edges correspond to a 

‘crew swap’ since the duty hours are reset to zero as a fresh crew is being assigned.  

3. Edges that go from a departure node             to an arrival node                               . These 

edges represent the travel between two locations and          is the travel time between the locations. If 

           >   then there is no such edge because the crew would exceed its duty cycle in mid air. 

Edge weights: Weights are assigned to edges to account for flying costs, delay penalties, and crew costs. 

1. Each travel edge carries a weight equal to the flying cost. 

2. Each edge representing a regular stop carries a zero weight. 

3. An edge corresponding to a crew swap carries the cost of a crew swap at this location. 

4. The edges that connect the last location in the stop sequence to the super sink D carry a weight equal to the late 

delivery penalty or non-delivery penalty (if applicable). The delivery penalty is calculated based on a target delivery 

time and is a function of the deviation from the target time. 

Disruptions and Recourses: In keeping with our discretization of the problem, a disruption at a location may have a finite 

(usually small) number of possible realizations. Each such realization is characterized by three pieces of information: the 

location, a start time       , and an end time      >       . The effect of a realized disruption is to prevent landings and/or 

takeoffs at the affected location for all times between        and     , both inclusive. A node           is affected by a 

realization                 of a disruption if                 Each realization affects the planned itinerary differentially. 

In particular, ground delays are introduced in the schedule for departures, and air delays and diversions are introduced for 

disrupted arrivals. This effect of a realization is modeled in our approach by associating the disrupted node           with 

another node             that serves as its recourse. Note that       so that the recourse node is always later in time and 

moreover is not in turn disrupted by the same event. Thus, for each potentially disrupted node   we define a set of recourse 

nodes Ri associated with all realizations of the disruption. 

Robust itinerary generation 

The problem of finding a robust itinerary given multiple disruptive events, with finite discrete realizations, is equivalent to 

finding a path from S to D that minimizes the maximum cost over all realizations. 

Policies: A policy chooses exactly one outgoing edge from each vertex. In other words, a policy tells us the next action 

to take when we find ourselves in a particular state. 

Itinerary: An itinerary is a sequence of nodes                   
  such that there is an edge between any two consecutive 

nodes in the sequence. In other words, an itinerary is a path from the super source to the super sink in our directed graph. 
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Given a scenario, i.e. a choice of realizations for each disruptive event, a policy always yields a path that is feasible in 

that scenario. A policy when coupled with a particular choice of disruption realizations yields a path in space-time. The 

cost of a path is the sum of the edge costs. The goal of this paper is to minimize the cost of the worst-case path that can 

result from a policy. This worst-case path corresponds to a particular scenario, which could be selected by a malicious 

opponent. Unlike the classical robust itinerary, which is feasible in every scenario, this worst-case path is not necessarily 

always feasible. If a different realization should occur, then the worst-case itinerary would be disrupted as well. However, 

the optimal policy is then able to show the best recourse to take after the subsequent disruption.  

In the figure below, we show some of these features on a section of the graph when in-air delays are disallowed. In this 

picture we have two locations, one of which is affected by a disruptive event (indicated by the boxed nodes). The first two 

“rows” are respectively the arrival and departure nodes at this location. The third row shows he arrival nodes at the 

subsequent location. Time is discrete and in this picture it runs from t=0 to t=5. The elapsed duty cycle is also discretized 

and it can take values between d=0 and d=3. For each time t, the nodes corresponding to different duty cycles are shown 

diagonally for ease of visualization. The dashed edges show regular stops and flights. Each solid line connects an affected 

node to its recovery or recourse node. Note that these solid lines are not edges in the graph. Because in-air delays are 

disallowed, every affected arrival node gets a node at the end of time horizon as its recourse to make landing at such 

affected nodes infeasible. The solid edges that go from nodes with d=2 or d=3 to a node with d=0, correspond to a 

ground delay with a crew change. Otherwise they correspond to a ground delay without a crew change. 

 

 

Figure 1. Extended State-space Graph with Recourses 

Algorithm 

The labeling algorithm proceeds as follows. Each node gets two labels, denoted   and  . We iterate over the nodes in 

anti-lexicographical order. As we do this, for each node  , we update its own label    and the labels    for each of its parents. 

Initialization: Set     ,       , and            for all   
Iterative Step: For each node   in anti-lexicographical order 

 Set           
      

 For each   such that       is an edge update                  , where     is cost of the edge      . If        

  , then           . 
Termination: At termination the label of the super source node    gives the length of the robust itinerary. The robust 

itinerary can be traced by starting from super source S and tracing through the      labels to the super sink D.  The complete 

policy is obtained by looking at         for all  . 
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Results 

The following table shows the scaled penalty in the worst-case for the policy generated by the algorithm. The scenarios 

for the table above were generated for a problem with 6 stops. We had two disruption events at locations 2 and 5. In the 

4-scenario case there were two different realizations for each of the disruptions in terms of start and end times. The 9- and 

25-scenario cases were similarly generated. As indicated earlier in this paper, we assume that all take offs and landings are 

disallowed when a location is affected by a disruption. Other parameters of the problem were held fixed. We solved the 

above problems using a time discretization of 1 hour, 30 minutes, and 15 minutes respectively.  

Table 1. Performance of Robust Policy. (No disruptions = 1.00.) 

 1 hour discretization 30 minute discretization 15 minute discretization 

4 (2x2) scenarios 1.084 1.041 1.030 

9 (3x3) scenarios 1.094 1.062 1.041 

25 (5x5) scenarios 1.105 1.073 1.052 

 

Each figure in the table is the ratio of the worst-case cost of the policy to the cost of the undisrupted shortest path. Thus, 

in the case of 4 scenarios and a discretization of 1 hour, the robust itinerary has an 8% higher cost than the shortest path. 

The results confirm the intuition that as we add more scenarios, certain policies no longer remain cost effective and thus 

the robust solution worsens. Furthermore, finer time discretization gives the algorithm more choices, in time spent on 

ground for example, and it can then find a policy with a lower cost.  This is reflected in the 5% lower cost of the resulting 

solution for 15-minute discretization as compared to the 1-hour case. The improved performance comes at the cost of 

longer compute times. Because the time discretization leads to an increase in nodes due to both shorter time intervals and 

more discretized duty cycles, the solution time increase from under one second for 1-hour to approximately 10 minutes for 

15-minute discretization. Note that the algorithm finds an optimal policy, which means it finds recourse action for every 

combination of realizations of the disruptive events. 

Conclusions 

This paper focuses on disruption management for airlift operations, a problem of considerable practical interest real-world 

transportation. Our model and methodology robustly handle disruption uncertainties and because of an expanded decision 

space, our policies yield paths that are shorter than a single robust itinerary that avoids all disruptions. At the same time, 

we make no assumptions about the probability distributions on the sets of disruptive events. At the same time, a decision 

maker has the flexibility of deciding which disruptions to plan for. The algorithm presented here is polynomial time. 

Implementations of this algorithm in high-level programming languages such as Python or C++ are able to solve typical 

problems with a 15-minute discretization, 5-10 stops, and with two or three choices for disruptive events at each stop, in 

just a few minutes on a modern laptop. 
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