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 Permutation codes have been extensively investigated, both because of their intrinsic mathematical interest 

and because of relevant applications based on error-correcting codes. The Maximum Permutation Code 

Problem (MPCP) is a challenging packing problem on permutations. The objective is to maximize the size 

of permutation codes with a given minimum Hamming distance between the codewords. In a similar way 

to the well-known sphere packing problem, an optimal permutation packing usually has a highly regular 

structure. In this paper a new idea of regularity degree of permutation codes is developed and the relationship 

between packing density and regularity degree of permutation codes is investigated. Computational 

experiments on random permutation packings run on different MPCPs confirm that, analogously to the 

sphere packing problem, the regularity degree of permutation codes tends to increase as the code size 

approaches to the optimum. 

Introduction 

For several centuries mathematicians have been fascinated by combinatorial problems related to permutations. Leonhard 

Euler, the great mathematician of the 18th century, was one of the first who systematically studied permutations and in 

particular latin squares. Two centuries later, when the works of Shannon and Hamming founded the subject of Information 

Theory, new challenging combinatorial problems emerged. In particular, a crucial role is played by error-correcting codes. 

These are codes capable of detecting and correcting errors during data transmission. The ability to identify and correct 

errors is strongly related to the minimum Hamming distance between the codewords, i.e. the minimum number of differing 

components in the codewords. Among the optimization problems concerning various error-correcting codes the Maximum 

Permutation Code Problem (MPCP) is enjoying particular attention, because of its potential applications to powerline 

communication (PLC) (see Colbourn et al (2004), Han Vinck (2000) and Pavlidou et al (2003)). Since one of the main 

concerns in PLC is interference due to noise, a reliable error-correcting coding protocol is required. One of these is the 

so-called M-ary frequency shift keying (FSK), in which a finite number of frequencies is used to modulate the signal. 

Permutation codes arise as a suitable mathematical framework for FSK. Furthermore, permutation codes have been applied 

also for coding with block ciphers and for the design of multilevel flash memories (see de la Torre et al (2000) and Jiang 

et al (2008)). From a mathematical perspective the MPCP represents a fascinating link between coding theory, group theory 

and combinatorics. The MPCP consists of finding the largest set of permutations of length n, such that the Hamming 

distance between the permutations is at least equal to a fixed value d. Several different methods have been developed to 

study and solve the MPCP, such as linear programming (Bogaerts (2010), Tarnanen (1999)), group theory (Deza and 

Vanstone (2010), Dukes and Sawchuck (2010), Frankl and Deza (1977), Chu et al (2004)) as well as exact and heuristic 

search techniques (Smith et al (2012), Barta et al (2014), Montemanni et al (2014a, 2014b), Janiszczack et al (2015)).  

Studies about the MPCP show that in general the optimal, or the best known, solutions feature an extremely symmetric 

configuration, comparable to the structure of a crystal. In fact, optimal codes are usually obtained by combining selected 

orbits of specific permutation groups having considerable symmetry properties. On the other hand, permutation codes 

based on a random packing procedure are generally far from the optimum. From this point of view the MPCP shows 

remarkable similarities to the sphere packing problem in Euclidean space. The codewords of the MPCP correspond to the 

centers of spheres and the minimum Hamming distance constraint corresponds to the non-overlapping constraint of the 

spheres. One of the major mathematical achievements of the last decades was the proof of the Kepler Conjecture by Hales 

in 1998, stating that the face-centered cubic packing, that is the well-known regular way of piling cannonballs or oranges, 

is the tightest possible arrangement of spheres in space (see for instance Hales (2000)). As already proved by Gauss, this 
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lattice packing has a density      , which is about 74%. However, in recent years random sphere packings have been 

the object of systematic investigation and it has been proved in Song et al (2008) that random sphere packings cannot exceed 

a density limit of 63.4%.  

The main purpose of this paper is to investigate, whether permutation codes behave similarly to sphere packings. More 

specifically, the regularity degree and the packing rate of many randomly generated permutation codes are measured and 

evaluated, in order to establish a relationship between these two variables. The paper starts with the formalization of the 

MPCP and with the definition of the regularity measures for permutation codes. The algorithm used for generating random 

permutation codes is then presented and finally the last section is devoted to the discussion of the computational results.  

The maximum permutation code problem 

Any codeword of length n in a permutation code can be obtained by permuting the n-tuple x0 = [0, 1, ..., n - 1] ∈ N
n

. Let 

Ωn be the set of all codewords of length n. A permutation code C is simply a set of codewords that is a subset of Ωn. As 

already mentioned, the ability of permutation codes to identify and correct errors is related to the minimum Hamming 

distance between the elements. The Hamming distance dH(x, y) between codewords x and y is the number of components 

that differ in the two codewords. For any code C ⊆ Ωn with |C| > 1 the code distance is defined as 

 

δ(C) =        ∈                          (1) 

 

In other words, δ(C) corresponds to the minimum distance between the codewords belonging to the code C. The MPCP 

can now be formulated as follows.  

Definition 1. Given a codeword length n and a distance d, the maximum permutation code problem MPCP consists of the 

determination of a largest code C ⊆ Ωn that satisfies the code distance constraint  δ(C) ≥ d. 

In the sequel, MPCPs will be denoted by means of their characterizing parameters n and d and the maximum number of 

codewords of an (n, d)-problem will be indicated by M(n,d). In analogy to the packing density of the sphere packing 

problem, the packing rate of a permutation code can be defined as follows:  

Definition 2. Let C be a feasible code of an (n, d)-problem. The packing rate ρ(C) is the ratio of the code size |C| to the total 

number of permutations, that is 

ρ(C) = 
   

  
               (2) 

Measuring the packing regularity 

When glass marbles are poured in a box, usually the random disposal of the spheres presents holes in-between, although 

no more marbles can be inserted. Randomly generated permutation codes of an (n, d)-problem have very similar features.  

Definition 3. Let C be a permutation code of an (n, d)-problem. C is called a maximal code, if  Cꞌ
 ⊃ C, such that δ(Cꞌ) ≥ d.  

In other words, no further codeword can be added to the code C without violating the code distance constraint. A 

well- known characteristic of the sphere packing problem is that the tightest possible arrangement of spheres has a highly 

regular pattern. An interesting issue is whether optimal permutation codes have analogous regularity features.  

The distance pattern 

The problem that arises is, how to measure the regularity degree of a feasible solution C of an (n, d)-problem. A natural 

approach is to look for regular patterns in the distance matrix of the solution.  
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Definition 4. Let C = {x1, ..., x|C|
} be a feasible code of an (n, d)-problem made up of |C| codewords. Define the distance 

matrix D of the code C by D(i,j) = dH(xi,xj), ∀i, j ∈{1, ..., |C|}.  

The following definition introduces the concept of distance pattern of a codeword in a permutation code.  

Definition 5. Let f(k) be the number of occurrences of the distance k ∈{d, ..., n} between a codeword x ∈ C and the rest of 

the codewords in the code C. We call the array f = [f(d), ..., f(n)] the distance pattern of codeword x.  

As the distance pattern provides an insight into the relative position of a codeword with respect to the other ones, the 

number of different distance patterns encountered in a code C, denoted by φ(C), might be a simple but effective regularity 

indicator: the less different distance patterns are there, the more regular is the solution.  

The sectorial balance 

If the distance pattern gives information about the local structure around the codewords, the second regularity parameter that 

we adopt measures the overall homogeneity of the code within the complete set of codewords Ωn. The idea of partitioning 

the search space Ωn, introduced in Barta et al (2014) and applied in Barta et al (2015), Montemanni et al (2014a, 2014b), 

can be generalized as follows:  

Definition 6. Denote by Sij the set of codewords having the i-th component equal to j-1, that is Sij = {x ∈ Ωn | x(i) = j-1}, 

∀ i, j ∈ {1, ..., n}. 

It is interesting to remark that, by fixing the component index i, the collections of sets {Si1, ..., Sin} form partitions of 

Ωn. However, also the collections of sets {S1j, ..., Snj}, obtained by fixing the value index j, form partitions of Ωn. An 

effective way to measure the homogeneity of the distribution of a permutation code C, is to count the number of 
codewords belonging to each subset Sij.  

Definition 7. Let P(i, j) be the number of codewords in a code C belonging to the sector Sij. We refer to the n×n matrix P 

with components P(i, j) as the sectorial partition matrix of the code C.  

A peculiar property of the sectorial partition matrix P is that all its rows and columns sum up to |C|, since each of them 

represents a specific partition of the code. In a completely homogeneous solution it might be expected that the codewords 

are equally distributed with respect to the sectors, that is, each sector S contains exactly     
   

 

 
codewords. In general, the 

balance degree of a code can be measured in the following manner.  

Definition 8. Let P be the partition matrix of a code C. We define the balance deviation dev(C) of the code C by  

        
 

  
              

                (3) 

 
The balance deviation dev(C) corresponds to the standard deviation of the number of codewords in each sector Sij with 

respect to the average value   .  

Optimal codes of problem (6,5)  

The case of the problem (6,5) is particularly interesting, because it has a high number of optimal solutions, that is codes 

with size |C| = 18, however only four different structures have been observed. Table 1 summarizes the distance patterns of 
the 4 classes of optimal solutions C1, ..., C4. As shown in Table 1, the codes of type C1 are perfectly regular, because all 

codewords have the same distance pattern and furthermore the balance deviation is equal to 0. This means that any 
C1-solution has exactly 3 codewords in each sector Sij. On the other hand, the classes C2, C3 and C4 provide a remarkable 

example of optimal, but not completely symmetric permutation codes. For instance, codes of type C2 have four different 

distance patterns (the number of their occurrence is reported in column 3) and a balance deviation equal to 0.408. Finally, 

the comparison of the values of φ(C) and dev(C) suggests a positive correlation between the two regularity indicators.  
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Generation of random permutation codes 

Exact vs. heuristic algorithms  

Theoretically, any MPCP can be solved by applying a suitable exact algorithm, such as a linear program or an exhaustive 

branch and bound search. However, as shown by several studies (see for instance Barta et al (2014), Bogaerts (2010), 

Montemanni et al (2015), Smith and Montemanni (2012)), exact algorithms can handle only small-sized (n,d)-problems, 
because of the combinatorial explosion of the search space Ωn. Currently, state-of-the-art exact algorithms are able to 

solve to optimality only (n,d)-problems with n   6 and some special cases of larger instances.  

Table 1. Regularity degree of optimal (6,5)-codes 

 

On the other hand, many attempts have been made to generate feasible codes for larger instances by exploiting group 

theoretical knowledge on permutations (see Barta et al (2015), Chu et al (2004), Deza and Vanstone (1978)). The codes 

obtained by such algebraic approaches are obviously highly symmetric, but usually there is no way to tell whether they 

are optimal and whether there are other less regular equivalent solutions, as in the case of problem (6,5).  

One main purpose of this study is to describe and test a fast heuristic algorithm, able to produce, by means of a random 

exploration of the search space, a large number of maximal codes for problems with n > 6.  

Description of the algorithm CodeExplorer 

The search algorithm, referred in the sequel as CodeExplorer, starts by generating an initial solution C by choosing 

codewords in a random way from the set of feasible codewords, denoted by Rem, which is initially set to Ωn. Whenever a 

codeword x is picked from Rem and added to the code C, the whole neighbourhood U(x) = {xꞌ ∈ Rem | dH(x, xꞌ) < d} of x 

is removed from Rem. This procedure is then repeated until Rem is empty.  

At this point an exploration step is carried out, by retracting a given number Ndel of the elements in C. The codewords 

to be deleted are chosen randomly. Consequently, the set Rem of the unused feasible codewords is updated and a new 
maximal code Cnew is obtained by adding randomly chosen codewords from Rem until this set is exhausted again. If 

Cnew represents an improvement in terms of the number of codewords, it is stored as the best current code. Finally, Cnew 

is assigned to the current code C and a new exploration step can be performed. A more schematic description of the algorithm 

CodeExplorer is provided by the following pseudocode. 

Step 1. Initialization 

 Set Rem := Ωn, C =   and Cbest =  . 

Step 2. Completion to a maximal code 
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 Choose a random codeword x ∈ Rem. Update C := C  {x} and Rem := Rem\U(x). Repeat Step 2 until Rem   .  

Step 3. Update and exit criterion 
 If |C| > |Cbest| update Cbest := C. Stop if the maximum number of iterations is reached. 

Step 4. Retracting 

 Select randomly Ndel codewords out of C and remove them from C. Add to Rem all codewords  

x ∈ Ωn\C that are compatible with C (in terms of Hamming distance). Go to Step 2.  

Computational experiments 

The main purpose of the computational experiments reported in this section is to measure the regularity degree of a large 

number of maximal codes and to establish a relationship with the size of the solutions. The algorithm CodeExplorer 

described in the previous section is tailored for this task. At each iteration, the heuristic algorithm CodeExplorer builds a 

maximal code C of the (n,d)-problem and computes its regularity indicators, as explained before. In order to investigate 

the correlation between regularity and size, the values of the regularity indicators have been clustered depending on the 

code size |C|.  

Tables 2-4 give a statistical overview of the regularity features of three different (n,d)-problems: (6,4), (6,5) and (7,5). 

For each instance 1,000,000 maximal codes have been generated and evaluated by our algorithm. The first column of each 

table shows the clusters of maximal codes ordered by code size.  The following six columns report the minimum, the 

maximum, respectively the average value of the regularity indicators φ(C), i.e. the number of different distance patterns 

within a code and dev(C), the balance deviation, as previously defined. All the tests reported in this section have been 

obtained by running the algorithm CodeExplorer encoded in ANSI C on a computer equipped with an Intel Core i5 2.3 

GHz processor and 8 GB of memory. 

Since the optimum of problem (6,4) is known to be 120 (see for instance Smith and Montemanni (2012)), clusters of 10 

units have been adopted in Table 2. The rate of retracted codewords at each iteration has been fixed to 60%. A higher rate 

would require significantly more computation time, since each step would involve an almost complete reconstruction of 

the code. Essentially, the low values of the regularity indicators φ(C) and dev(C) in the upper clusters of problem (6,4) 

show that, these solutions have a high degree of regularity. It is worth noticing that all optimal (6,4)-solutions found 

correspond to a unique, perfectly regular structure. As the code size decreases, the values of the regularity indicators clearly 

tend to increase, with a maximum around 70-80 codewords. In other words, a middle layer of mainly irregular codes can 

be observed between 50 and 90 codewords. Finally, the lowest clusters show a clear decrease in the regularity indicators. 

This effect is actually reasonable, because the codewords in extremely small maximal codes have to be placed so that no 

other codeword can fit in the empty spaces. Therefore it is not surprising to find high regularity in the low region. 

Table 2. Size vs regularity: (6,4)-maximal codes 
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Table 3. Size vs regularity: (6,5)-maximal codes 

 

Table 4. Size vs regularity: (7,5)-maximal codes 

 

Table 5. Average code size and packing rate 

 
 

As already observed in Table 1, problem (6,5) features four classes of optimal codes, each one of 18 codewords. A series 
of experiments with the algorithm CodeExplorer showed that about 42% of them are of the fully regular C1-type, whereas 

about 58% of the optimal codes are slightly irregular! The results in Table 3 show highly regular patterns for |C| = 18, then 

a large central zone (between 8 and 17 codewords), containing a mix of mainly irregular structures and some regular 

codes. A higher degree of regularity can be observed again in the lowest clusters |C| = 7 and |C| = 6.  

Table 4 contains the statistical results of problem (7,5). The fact that (7,5) is currently an open problem, that is not yet 

solved to optimality, makes it particularly challenging. Explicitly computed (7,5)-codes of size 77 can be obtained by 
assembling 11 orbits of a C7 permutation group (for more details see Barta et al (2015), Smith and Montemanni (2012)). 

Due to the considerable size of the problem, it is not possible to generate in a reasonable time large solutions by adding 

codewords in a random way. Therefore, as an initial solution for the search with CodeExplorer we adopted a regular 77-code 

based on C7-orbits with a retracting rate of 15%. The results presented in Table 4 are clustered with a cluster size of five 
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units. The regularity profile of problem (7,5) presents strong similarities with the previously discussed instances: a peak of 

irregularity can be observed around 60 codewords and from these values upwards there is a clear decreasing trend. The 

largest solutions are 77-codes with a unique highly regular, fully balanced structure. However, these solutions are formed 

by two different distance patterns. A decreasing tendency of the regularity indicators is observable also downwards.  

Finally, Table 5 compares the average packing rate of randomly generated codes with the packing rates of the best 

known solutions for the three (n,d)-problems considered. The retracting rate has been set to 100%. The results clearly 

show that on average random packings are significantly weaker than the best known codes.  

Conclusions 

This study focuses entirely on the metric structure of permutation codes and on a possible relationship between size and 

regularity. The results strengthen the intuition that large-sized and in particular optimal codes are in general also highly 

symmetric. However, a remarkable case of not completely regular but optimal code has been observed. The tools developed 

in this work might be helpful in the future to estimate, whether the current best solution of an open problem is likely to be 

the optimum or not. 
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