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Abstract 

 

Multi-class priority queuing systems with access time targets and dynamic arrivals are common in 

many environments, including emergency, healthcare, logistics and hospitality services. This study 

focuses on the waiting line management of new cases in the specialist outpatient clinics of the 

Hospital Authority of Hong Kong.  The objectives are to assign appointment dates in a way to fulfill 

the access time targets for urgent (highest priority) and semi-urgent (second highest priority) new 

cases while maintaining acceptable access time for non-urgent (routine) new cases. A dynamic 

appointment scheduling algorithm is developed and tested through simulated instances created from 

the waiting time data and hospital attendance data for a one-year horizon. The experimental results are 

compared with the reported performance statistics. Performances are also compared with results of the 

deterministic problem assuming the arrival data were given. For certain ordered set of objective 

weights relevant to the current problem, the deterministic problem can be formulated as a 

transportation model and solved optimally by the classical transportation algorithm with an additional 

checking procedure. 

 

Keywords: Real-time scheduling heuristic; Healthcare; Appointment systems; Access time service 

level; Transportation model 

 

Background 

 

This study is motivated by the long waiting time for specialist outpatient clinics in public hospitals 

reported in recent years.  In the current system, new cases are triaged into three categories: urgent, 

semi-urgent or non-urgent (routine) cases. After the Hospital Authority has adopted a number of 

measures (including diversion of stable, less urgent cases to family medicine specialist clinic, general 

out-patient clinic; setting up public-private partnership; and cross-cluster referral arrangement for 

selected patients), the median waiting time for urgent and semi-urgent new case bookings have been 

improved to within their respective target (of two and eight weeks, respectively) [1]. The tradeoff is 

the long waiting time for patients with less severe conditions and non-urgent cases seeking for follow-

up appointments. Due to new and continuing cases, the total attendance figures of specialty outpatient 

clinics have been increasing in recent years. Occasional programs on clearing backlog were launched 

such as offering additional appointment sessions to the non-urgent new cases. To minimize additional 

effort, this study aims to provide a real-time scheduling tool for outpatient appointment booking 

systems to help manage the limited resources supply in anticipation of growing service demand. 

Moreover, it was suggested during government meetings that a performance pledge should be set on 

the median waiting time for routine cases of major specialties [2]. A dynamic scheduling tool could 

enable testing of such feasibility with evaluation of appropriate access time target. 

 

Problem statement 

 

The online appointment booking system operates like a single-server priority queueing system 

offering multiple units of capacity in consecutive time periods. In each time period, arrivals (patients) 
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of different categories occur dynamically and each demands one unit of capacity in the current or a 

future time period. The decision is to assign an appointment time period (date) for each arrival to 

satisfy a specific target service level. It should ensure a specified proportion (or more) of patients in 

each urgent category can receive an appointment within a predetermined target time. Non-urgent 

category may not be imposed an access time target but the arrivals are expected to receive an 

appointment as early as possible. The objectives can be summarized in the following decreasing order 

of priority: 

 

(i) Maintain the specific target service level by ensuring a specified proportion of patients (or more) 

in relevant categories can get access to service within the target time 

(ii) Assign an appointment time period as early as possible to patients in categories with no access 

time target 

 

(Naturally, objective (ii) can be handled as objective (i) with zero minimum specified proportion and 

a large access time target.) The system constraints are the service capacity in each time period based 

on availability of resources. A medium-term planning horizon (one year) comprising a number of time 

periods (workdays) is studied in which the arrivals are allowed to have appointments beyond this 

planning horizon.  

The current problem is related to several classical problems. The demand and supply relationship 

is similar to a dynamic transportation model where the dynamic arrivals are each requesting for a unit 

capacity and suppliers correspond to the time periods (workdays) providing multiple units of service 

capacity. Objective (ii) is related to the parallel machine scheduling problem with the weighted 

completion time of jobs (patients) as the objective function. Each job has its release time (arrival time) 

and demands unit time on a machine but the number of machines varies in different time periods. The 

weights can represent the priority (importance) of categories. These two related problems inspire the 

development of (a) an optimal solution in the deterministic problem for performance evaluation; and 

(b) the dynamic scheduling algorithm. 

 

Related studies 

 

Other analytical methods for similar problems include stochastic dynamic programming which 

formulates a multi-day appointment problem to maximize the number of same-day appointments 

made with walk-in patients and the assignment frequencies of patients to their familiar physicians [3]. 

An adaptive threshold rule with a look-ahead time window is also proposed for practical use. 

Similarly, the problem of an appointment system where prospective inpatients will abandon 

depending on their waiting time is formulated as a Markov decision process [4]. In solving practical 

problems of realistic size, the large state space required has to be compromised by use of an 

approximate dynamic programming algorithm which could approximate the optimal solution in 

acceptable computational time. Other problems adopting this approach include scheduling diagnostic 

service, such as computer tomography scan in [5], in which the objective is to minimize the sum of 

appointment cost, patient diversion cost and delay cost over an infinite horizon. 

As alternatives, an adaptive method is developed to adjust the resource (computer tomography 

scans) in a radiology department [6]. The operating hours are adjusted on a weekly basis and the time 

slots can be reallocated between patient groups on a daily basis. A hierarchical linear goal 

programming approach was adopted in an offline radiotherapy pre-treatment scheduling problem [7]. 

The waiting time target was set by patient type and priority class. The non-preemptive goals comprise 

of minimizing proportion of patients not meeting the waiting time target over all patient groups, and 

minimizing two lateness measures. Due to the large problem size, dispatching rules are employed to 

provide an initial solution to each phase after which the best objective obtained within a time limit 

will be passed onto the subsequent phase as an additional constraint. 

 

Model Development 

 

The current problem can be formulated by a stochastic goal programming model with uncertain 

demand arrival times. The solution of the deterministic equivalent model is used to assess the solution 
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quality of the dynamic scheduling algorithm, given the arrival times of requests. This section first 

presents the model characteristics based on the local public specialist outpatient clinics. 

 
Demand characteristics 

 Patients arrive randomly and those with urgent conditions requiring early intervention are treated 

with priority. A triage system is implemented to classify patients into one of three categories. 

 Each patient demands one unit of service (appointment) regardless of their category.  

 

Server characteristics 

 The daily service capacity (maximum number of appointments) for a specialist outpatient clinic is 

set by considering various factors, including the service demand, manpower available and 

capacity of physical facilities.  

 

Operating targets 

 Patients triaged into one of the urgent categories will expect an access (or waiting) time limit to 

an appointment. The management expect a significant proportion (e.g., at least half) of patients in 

these categories can get access to service within the target time. The actual statistics serve the 

purpose of monitoring, control and performance reporting.   

 Stable (routine) new cases have no target access time but should be treated as early as possible. 

(The access time of a majority (e.g., 90
th
 percentile) of these patients is also published regularly 

on the public website.) Without loss of generality, this category is defined as the last category in 

the problem. 

 

Model parameters 

 Deterministic 

M  = number of patient categories in decreasing order of urgency 

D  = number of workdays recording arrivals in the planning horizon  

Tm  = the target access time to an appointment for patients in category m = 1,…, M (For non-

urgent category M with no target access time, TM can be set to a large positive value.) 

m = minimum proportion of patients in category m expected to have access time to service 

within the target Tm, m = 1,…, M (For non-urgent category M with no target access time, M 

can be set to 0.) 

  
 =  priority weight (or penalty cost) of underachieving the (primary) goal on access time target 

of category m = 1,…, M-1, where   
  >   

  > >     
 

 

  
 =  priority weight (or penalty cost) of not achieving the (secondary) goal on early appointment 

time of category m = 1,…, M, where   
     

      
  

Qt  = units of service capacity on workday t = 1,…, D 

 Stochastic 

N  = number of patients arriving in interval [1, D] of the planning horizon 

Nm  = number of patients of category m = 1,…, M, where 



M

m

mNN
1

  

ai  = arrival day of patient i = 1,…, N 

ui = category of patient i = 1,…, N 

Lm  = list of category m patients sorted in ascending order of their arrival times, m = 1,…, M, 

where mm LN   

D = total number of workdays required to provide appointments for the N patients (based on 

first-come-first serve regardless of patient category) 

 

Decision variables 

xit  = 1 if patient i receives an appointment on day t; 0 otherwise (i = 1,…, N, t = 1,…, D) 
  
  = underachievement of the minimum number of patients in category m achieving the target 

access time, m = 1,…, M-1 
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Formulation of Retrospective Model (Model R) 
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Model R consists of both deterministic and stochastic parameters. The first expression in the objective 

function (equation (1)) penalizes the underachievement of cases in urgent categories (1,…, M-1) with 

respect to the target time limit and desired proportion achieving the target. This serves as the primary 

goal of the model. The secondary goal is to schedule appointments as early as possible in each 

category.  This is represented by the second expression minimizing the sum of access times of patients 

in each category (1,…, M). Demand fulfilment and service capacity is formulated by equation (2) and 

equation (3), respectively. The appointment day (t) of a patient (i) is scheduled after the request day 

(ai). The minimum number of patients achieving the target access time in an urgent category (m = 

1,…, M-1) is formulated as a goal constraint in constraint (4). Variables in the model are declared in 

constraint (5). 

When the stochastic parameters are known in advance, model R becomes a deterministic linear 

goal programming model that can be solved exactly. It can be further transformed into a variant of the 

transportation model (R) with constraint (4) incorporated into the objective function (1): 

 

Formulation of Model R 
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In the current problem, the primary goal of ensuring a specified proportion of patients in relevant 

categories can achieve the access time target is treated with higher priority than the secondary goal of 

providing early access of service to all patients. This implies the following ordered set of weights is 

appropriate for the current problem: 

 

  
  >   

  > >     
 

 >   
     

      
 

 (6) 

 

For the weight parameters satisfying (6), model R’ can be solved optimally by the classical 

transportation simplex method for large problems (e.g., N = 18,000 patients, M = 3 categories, D = 

247 workdays) with an additional checking procedure. A good initial solution is to apply the first-

come-first-serve (FCFS) rule to patients in the most urgent category as early as possible when 

capacity is available. Repeat the same FCFS rule on patients in the next less urgent category until the 

last. The underachievement penalty cost (  
 ) for a category (m) exists as objective coefficient for all 

its assignment decisions (xit) when the target level   mm N  is not fulfilled in the incumbent 

solution. (Otherwise, the coefficient will be zero.) The additional checking applies to every incumbent 

solution when finding an improved solution. The non-basic cell with the most negative reduced cost 

will be checked to ensure the total cost of the new solution (after identifying a cycle of cells starting 
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with the non-basic cell) really leads to a lower total cost as given by equation (1’). Otherwise, the 

non-basic cell with the next smallest (negative) reduced cost will be examined and the checking 

procedure repeats. When all reduced costs are non-negative at some stage, the optimal result provides 

a benchmark for evaluating the performance of the dynamic scheduling algorithm when the stochastic 

parameter values are revealed dynamically.  

 

Dynamic scheduling algorithm 

 

The design of the dynamic algorithm consists of two main features: (a) reserving a portion of the daily 

capacity for urgency categories and (b) allowing rescheduling of appointments to make better use of 

idle capacity by looking ahead into the near future. The flowchart in Figure 1 shows the logical design 

of the algorithm with the major parameters defined in Table 1. 

 

Table 1. Algorithm parameters 
 

Description Notation Design rationale Value 

 Delay in assigning appointment to 

category m patients (m = 1,…, M) 

m No delay for the most urgent 

category 1; 

delay of category 2 patients 

= T1 + 1 week; 

delay of category 3 patients 

= T2 – 4 weeks 

1 = 0, 2 = 3,        

3 = 4 weeks 

 Proportion of daily capacity reserved 

for all urgent categories (m = 1,…, M-1) 

r Previous year demand, plus 

5% growth 

0.37 

 Look-ahead period to reschedule 

appointments earlier 

h Operational feasibility and 

convenience 

3 days 

 Proportion of patients in non-urgent 

category willing to have their 

appointments rescheduled earlier 

p Assume between 5 to 6 

rescheduled appointments 

per workday 

0.8 

 Number of instances with demand 

simulated 

n Achieving a maximum 

%error of less than 10% in 

estimating most 

performance measures with 

95% confidence 

30 

 

Computational experiments and results 

 

The computational experiments are designed to test the performances of the dynamic scheduling 

algorithm and model R for a one-year period based on annual reported statistics on access time of 

new cases and hospital attendance figures [8-10] from the Hospital Authority. The recent four-year 

period from 2012-16 and the ophthalmology specialist outpatient clinic in the Kowloon East Cluster 

are selected due to past research work conducted in this clinic. The demand data for the previous year 

and current year will be simulated based on past pattern while the operating parameters will remain 

constant. Previous year patients with appointments carried over to the current year will be deducted 

from the daily capacity (number of appointments allowed). 

 

Operating parameters 

 M = 3 categories, D = 247 workdays = number of workdays in previous year. 

 (Tm, m) = (2 weeks, 50%), (8 weeks, 50%) and (-, -) for m = 1, 2 and 3, respectively. 

 Average Qt = 59 appointments (from annual patient attendance of 14,472 in 2015-16). Assume the 

range of daily capacity = 6 appointments. 

 

Demand-related parameters 

 Previous year: Demand = 18,240 (2014-15), standard deviation (from annual demand in 2012-15) 
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Figure 1. Design logic of the dynamic scheduling algorithm 
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= 310.24. Proportion of demand by category = 0.3, 0.03 and 0.67 for m = 1, 2 and 3, respectively. 

 Current year: Demand = 18,292 (2015-16), standard deviation (from annual demand in 2013-16) 

= 364.66. Proportion of demand by category = 0.29, 0.02 and 0.69 for m = 1, 2 and 3, 

respectively. 

 

Priority weights (or penalty cost) 

   
 = 10

8
,   

 = 10
6
,   

 = 10
3
,   

 = 10
2
,   

 = 1 

 

The demand-related parameters will be used to simulate n = 30 instances, each for a one-year period. 

Appointments made beyond this period (t > D) will also be recorded for performance evaluation. 

Results of the dynamic scheduling algorithm and model R will also be compared with the reported 

access time statistics in 2015-16 [9]. Table 2 and Table 3 give the summary results of access time 

performances and the level of achievement of the targets, respectively. 

With the adopted ordered set of priority weights, the dynamic scheduling algorithm can achieve 

similar or shorter access times in the urgent and semi-urgent categories (m = 1 and 2, respectively) at 

the expense of worse performance in the non-urgent category (m = 3). Nevertheless, the extreme 

performance of the largest 10% access time in this category is much reduced (66.6 vs 112 weeks). The 

average number of rescheduled appointments per day is 5.4 (with standard deviation of 0.62). The 

retrospective model R produces the lower bound for the results of the dynamic scheduling algorithm. 

The worse performance of access times (25
th
 and 50

th
 percentile) in the non-urgent category is 

expected to be due to the ordered set of priority weights resembling a non-preemptive goal 

programming model allowing almost no tradeoff between different goals.  

In terms of computational time, the dynamic scheduling algorithm takes an average of less than 6 

CPU seconds per (one-year) instance on an Intel(R) Xeon(R) CPU E31270, 3.4GHz processor. To 

verify optimality in the deterministic problem, model R could take over 4 CPU hours with the initial 

solution given by scheduling the categories in decreasing order of urgency and FCFS for patients in 

the same category. All algorithms have been coded in Microsoft Visual Basic .NET 2010 version. 

 

Table 2. Performance of access times for all categories 
 

Access time (weeks) m = 1  m = 2 m = 3 

Percentile 25th 50th 90th 25th 50
th
 90th 25th 50th 90th 

Dynamic  

sch. alg. 

0 0.4 1.2 3.0 3.0 3.0 30.9 49.2 66.6 

Retrospective 

model R 

0 0 0 0 0 0 28.5 37.6 42.4 

Reported 

statistics [9] 

< 1 < 1 1 3 6 7 11 15 112 

 

Table 3. Fulfillment of access time targets for the urgent and semi-urgent categories  

 

Percentage of patients with 

access time achieving target 

m = 1 (T1 = 2 weeks) m = 2 (T2 = 8 weeks) 

Dynamic sch. alg. 96.7% 100% 

Retrospective model R 100% 100% 

Reported statistics [9] > 90% > 90% 

 

Discussion and conclusion 

 

The reported statistics in Table 3 showed that not all urgent categories can meet their access time 

targets. Current performance assessment is based on the median access time of the two most urgent 

categories and both can achieve their respective target. However, the tradeoff is the long access time 

of the non-urgent category (routine new cases) with no imposed target time but large backlog 
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accumulated over the years. This is reflected in the extreme case of 112 weeks, indicated by the 90
th
 

percentile of access time in the non-urgent category. The limitation of this study includes the 

simulation of only one previous (the most recent) year’s demand to examine the impact on the current 

year’s performance. The patient arrivals are uniformly generated in the 1-year period, as there is no 

information on the fluctuation of demand within the year. By contrast, the additional sessions offered 

by individual hospitals in reducing the access time of non-urgent new cases have improved the 

performance not reflected in the routine operations. Hence, absolute comparison with the reported 

statistics is not possible here.  

The contribution of this work shows the potential to increase the percentage of urgent new cases 

achieving their respective target access time. The long access time of non-urgent new cases can also 

be reduced.  Rescheduling appointments to make better use of anticipated idle capacity can 

significantly affect the access time performance. Hence, resources could be allocated to allow more 

rescheduling, if considered. Future research effort could focus on reducing the disparity in access 

times between the semi-urgent (m = 2) and non-urgent (m = 3) categories. The algorithm parameters 

(Table 1) could be made adaptive to respond to the dynamic environment. Multiple specialist 

outpatient clinics with data available [8-10] could also be used to test the algorithms developed. 
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